[1]Wang Kaiming, Du Dong, Liu Guan, et al. Microstructure and properties of WC reinforced Ni-based composite coatings with Y2O3 addition on titanium alloy by laser cladding[J]. Science and Technology of Welding and Joining, 2019, 24(5): 517-524. [2]方金祥, 王玉江, 董世运, 等. 激光熔覆Inconel718合金涂层与基体界面的组织及力学性能[J]. 中国机械工程, 2019, 30(17): 2108-2113. Fang Jinxiang, Wang Yujiang, Dong Shiyun, et al. Microstructure and mechanics properties of interfaces between laser cladded Inconel718 coating and substrate[J]. China Mechanical Engineering, 2019, 30(17): 2108-2113. [3]Tamanna N, Crouch R, Kabir I R, et al. An analytical model to predict and minimize the residual stress of laser cladding process[J]. Applied Physics A, 2018, 124(2): doi. org/10. 1007/s00339-018-1585-6. [4]Lin Yinghua, Yao Jianhua, Lei Yongping, et al. Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding[J]. Optics and Lasers in Engineering, 2016, 86: 216-227. [5]赵盛举, 祁文军, 黄艳华, 等. TC4表面激光熔覆Ni60基涂层温度场热循环特性数值模拟研究[J]. 表面技术, 2020, 49(2): 301-308. Zhao Shengju, Qi Wenjun, Huang Yanhua, et al. Numerical simulation study on thermal cycle characteristics of temperature field of TC4 surface laser cladding Ni60 based coating[J]. Surface Technology, 2020, 49(2): 301-308. [6]王庆红, 王红英. 激光表面改性后TC4钛合金的表面层耐磨性分析[J]. 铸造技术, 2015, 36(8): 2024-2025. Wang Qinghong, Wang Hongying. Wear resistance of surface layer of TC4 alloy after laser surface modification[J]. Foundry Technology, 2015, 36(8): 2024-2025. [7]李利叶, 孙荣禄. 激光功率对熔覆Ni基复合涂层组织性能的影响[J]. 热加工工艺, 2016, 45(10): 182-186. Li Liye, Sun Ronglu. Influence of laser power on microstructure and performance of nickel-based composite coating[J]. Hot Working Technology, 2016, 45(10): 182-186. [8]Zhuang Qiaoqiao, Zhang Peilei, Li Mingchuan, et al. Microstructure, wear resistance and oxidation behavior of Ni-Ti-Si coatings fabricated on Ti6Al4V by laser cladding[J]. Materials, 2017, 10(11): 1248-1263. [9]王 站, 孙文磊, 黄海博, 等. 超声振动对低搭接率激光熔覆层质量的影响[J]. 激光与光电子学进展, 2019, 56(14): 178-183. Wang Zhan, Sun Wenlei, Huang Haibo, et al. Effect of ultrasonic vibrations on quality of laser cladding layer with low overlap rate[J]. Laser and Optoelectronics Progress, 2019, 56(14): 178-183. [10]夏思海, 武美萍, 马毅青, 等. TiC含量对TC4合金激光熔覆层组织和性能的影响[J]. 金属热处理, 2020, 45(6): 312-315. Xia Sihai, Wu Meiping, Ma Yiqing, et al. Effect of TiC content on microstructure and properties of laser clad layer on TC4 alloy[J]. Heat Treatment of Metals, 2020, 45(6): 312-315. [11]Liang J, Yin X Y, Lin Z Y, et al. Effects of LaB6 on microstructure evolution and properties of in-situ synthetic TiC+TiBx reinforced titanium matrix composite coatings prepared by laser cladding[J]. Surface and Coatings Technology, 2020, 403: 126409. [12]Farahmand P, Liu S, Zhang Z, et al. Laser cladding assisted by induction heating of Ni-WC composite enhanced by nano-WC and La2O3[J]. Ceramics International, 2014, 40(10): 15421-15438. [13]王 鹏, 李 军, 林崇智, 等. Ti-Ni金属间化合物电子结构与力学性质的第一性原理计算[J]. 中国有色金属学报, 2016, 26(12): 2546-2554. Wang Peng, Li Jun, Lin Chongzhi, et al. First-principles calculations of electronic structure and mechanical properties of Ti-Ni intermetallic compounds[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(12): 2546-2554. [14]Lv Y H, Li J, Tao T F, et al. High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti-6Al-4V by laser cladding[J]. Applied Surface Science, 2017, 402: 478-494. |