[1]贾幼庆. 浅谈渗氮技术及其应用[J]. 安徽冶金, 2016(4): 48-51. Jia Youqing. Anoverview of the nitriding technology and its application[J]. Anhui Metallurgy, 2016(4): 48-51. [2]中国机械工程学会热处理学会. 化学热处理原理[M]. 北京: 机械工业出版社, 1988: 51-52. [3]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006: 98-99. [4]郝 赛, 杜 凯. 金属渗氮技术的起源、发展与进步[J]. 科技创新与应用, 2014(18): 45. [5]王丽莲. 渗氮技术及其进展[J]. 热处理, 2001(2): 6-9. Wang Lilian. The technology and development of nitriding[J]. Heat Treatment, 2001(2): 6-9. [6]薛 冰. 等离子体渗氮技术研究[D]. 大连: 大连理工大学. 2003. [7]Yeung C F, Lau K H, Li H Y, et al. Advanced QPQ complex salt bath heat treatment[J]. Journal of Materials Processing Technology, 1997, 66(3): 249-252. [8]罗德福, 李惠友. QPQ技术的现状和展望[J]. 金属热处理, 2004, 29(1): 39-44. Luo Defu, Li Huiyou. Current situation and prospect of QPQ technology[J]. Heat Treatment of Metals, 2004, 29(1): 39-44. [9]韦习成. 盐浴渗氮技术的现状和发展思考[J]. 热处理, 2005(2): 16-19. Wei Xicheng. Current status and development of salt bath nitrding technology[J]. Heat Treatment, 2005(2): 16-19. [10]赵茂程, 潘一凡, 陆荣鉴. 气体渗氮中的氮势控制[J]. 热加工工艺, 2005(5): 31-32. Zhao Maocheng, Pan Yifan, Lu Rongjian. Controlling of nitrogen tendency in gas nitriding[J]. Hot Working Technology, 2005(5): 31-32. [11]Yang J, Liu Y, Ye Z, et al. Microstructural and tribological characterization of plasma- and gas-nitrided 2Crl3 steel in vacuum[J]. Materials and Design, 2011, 32(2): 808-814. [12]胡明娟, 潘健生. 钢铁化学热处理原理[M]. 修订本. 上海: 上海交通大学出版社, 42-51. [13]沈 琳. 38CrMoAlA钢制齿轮的气体渗氮工艺[J]. 金属热处理, 2018, 43(7): 188-191. Shen Lin. Gas nitriding process of 38CrMoAlA steel gear[J]. Heat Treatment of Metals, 2018, 43(7): 188-191. |