| [1]杨晓雅. 核电用316LN奥氏体不锈钢热变形组织演变与断裂行为[D]. 北京: 北京科技大学, 2016. [2]王胜龙. AP1000主管道整体锻造成形及晶粒度控制研究[D]. 北京: 北京科技大学, 2017.
 [3]裴海祥. 核电用316LN不锈钢在不同温度下的形变行为和机理[D]. 北京: 北京科技大学, 2015.
 [4]李景丹, 刘建生, 任树兰. 铸态316LN钢基于应变补偿的本构模型[J]. 锻压技术, 2019, 44(4): 176-181.
 Li Jingdan, Liu Jiansheng, Ren Shulan. Constitutive model of cast 316LN steel based on strain compensation[J]. Forging and Stamping Technology, 2019, 44(4): 176-181.
 [5]赵恒良, 翟月雯, 周乐育, 等. 316LN钢高温流变行为研究[J]. 塑性工程学报, 2019, 26(4): 176-181.
 Zhao Hengliang, Zhai Yuewen, Zhou Leyu, et al. Research on high temperature rheological behavior of 316LN steel[J]. Journal of Plasticity Engineering, 2019, 26(4): 176-181.
 [6]程晓农, 王 皎, 罗 锐, 等. 超(超)临界火电用新型奥氏体不锈钢的高温塑性变形行为及本构模型[J]. 塑性工程学报, 2018, 25(4): 122-128.
 Cheng Xiaonong, Wang Jiao, Luo Rui, et al. Plastic deformation behavior and constitutive model of new austenitic stainless steel at high temperature used for ultra super critical power plant[J]. Journal of Plasticity Engineering, 2018, 25(4): 122-128.
 [7]裴海祥, 侯 华, 李大赵, 等. 316LN不锈钢低速率应变下的热变形行为[J]. 测试科学与仪器, 2017, 8(2): 162-172.
 Pei Haixiang, Hou Hua, Li Dazhao, et al. Hot deformation behavior at low-rate strain of 316LN stainless steel[J]. Journal of Measurement Science and Instrumentation, 2017, 8(2): 162-172.
 [8]Liu X G, Zhang L G, Qi R S, et al. Prediction of critical conditions for dynamic recrystallization in 316LN austenitic steel[J]. Journal of Iron and Steel Research, International, 2016, 23(3): 238-243.
 [9]孙朝阳, 李亚民, 祥 雨, 等. 316LN高温热变形行为与热加工图研究[J]. 稀有金属材料与工程, 2016, 45(3): 688-695.
 Sun Chaoyang, Li Yamin, Xiang Yu, et al. Hot deformation behavior and hot processing maps of 316LN stainless steel[J]. Rare Metal Materials and Engineering, 2016, 45(3): 688-695.
 [10]何 岸, 杨晓雅, 谢甘霖, 等. 316LN不锈钢管道热加工过程的加工图及可加工性[J]. 钢铁研究学报, 2015, 27(8): 34-37.
 He An, Yang Xiaoya, Xie Ganlin, et al. Processing map and character of hot working of 316LN pipe during hot working process[J]. Journal of Iron and Steel Research, 2015, 27(8): 34-37.
 [11]Guo B, Ji H, Liu X, et al. Research on flow stress during hot deformation process and processing map for 316LN austenitic stainless steel[J]. Journal of Materials Engineering & Performance, 2012, 21(7): 1455-1461.
 [12]任树兰, 刘建生, 李景丹, 等. 316LN 钢 ESR 材料热变形行为及高温塑性本构方程[J]. 锻压技术, 2017, 42(10): 162-165.
 Ren Shulan, Liu Jiansheng, Li Jingdan, et al. Thermal deformation behavior and high temperature plastic constitutive equation of ESR steel 316LN[J]. Forging and Stamping Technology, 2017, 42(10): 162-165.
 [13]Wang S L, Zhang M X, Wu H C, et al. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel[J]. Materials Characterization, 2016, 118: 92-101.
 [14]He A, Wang X T, Xie G L, et al. Modified Arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation[J]. Journal of Steel Research, International, 2015, 22(8): 721-729.
 [15]Xie G L, He A, Yang X Y, et al. Arrhenius-type constitutive model for 316LN stainless steel during hot deformation[J]. Materials Science Forum, 2015, 817: 406-409.
 [16]李国栋, 卫英慧, 侯利锋, 等. 用于ITER的316LN不锈钢热变形行为[J]. 材料热处理学报, 2015, 36(2): 66-71.
 Li Guodong, Wei Yinghui, Hou Lifeng, et al. Thermal deformation behavior of 316LN stainless steel used for ITER[J]. Transactions of Materials and Heat Treatment, 2015, 36(2): 66-71.
 [17]彭宁琦, 唐广波, 刘正东. 热压缩流变应力曲线的修正方法[J]. 热加工工艺, 2012(17): 12-15.
 Peng Ningqi, Tang Guangbo, Liu Zhengdong. Correcting method of flow stress curve for hot compression[J]. Hot Working Technology, 2012(17): 12-15.
 [18]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Technology, 2004, 152(2): 136-143.
 [19]Kumar S, Samantaray D, Borah U, et al. Analysis of elevated temperature flow behavior of 316LN stainless steel under compressive loading[J]. Transactions of the Indian Institute of Metals, 2017, 70: 1857-1867.
 [20]Samantaray D, Aashranth B, Kumar S, et al. Plastic deformation of SS 316LN: Thermo-mechanical and microstructural aspects[J]. Procedia Engineering, 2017, 207: 1785-1790.
 [21]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
 |