[1]张小垒, 李 辉, 徐士新, 等. GCr15钢连续冷却过程中的相变和组织演变[J]. 金属热处理, 2014, 39(3): 99-102. Zhang Xiaolei, Li Hui, Xu Shixin, et al. Phase transformation and microstructure evolution of GCr15 steel during continuous cooling[J]. Heat Treatment of Metals, 2014, 39(3): 99-102. [2]田振卓, 霍向东, 李烈军, 等. 终轧后冷却速度对GCr15轴承钢组织和相变的影响[J]. 工业技术创新, 2014, 1(5): 520-524. Tian Zhenzhuo, Huo Xiangdong, Li Liejun, et al. Effect of cooling after rolling on microstructure and phase transformation of GCr15 bearing steel[J]. Industrial Technology Innovation, 2014, 1(5): 520-524. [3]刘 靖, 韩静涛, 席军良, 等. GCr15轴承钢加热温度与碳化物的溶解扩散[J]. 金属热处理, 2008, 33(10): 87-90. Liu Jing, Han Jingtao, Xi Junliang, et al. Study of temperature and carbide solution-diffusion for GCr15 bearing steel[J]. Heat Treatment of Metals, 2008, 33(10): 87-90. [4]孔永华, 李思贝, 周江龙, 等. 等温淬火工艺对GCr15钢领组织和耐磨性的影响[J]. 金属热处理, 2016, 41(7): 95-99. Kong Yonghua, Li Sibei, Zhou Jianglong, et al. Effect of austempering process parameters on microstructure and wear resistance of GCr15 steel spinning ring[J]. Heat Treatment of Metals, 2016, 41(7): 95-99. [5]张学飞, 李 卓, 崔 晓. GCr15轴承套圈热处理变形数值模拟[J]. 轴承, 2020(11): 45-49, 69. Zhang Xuefei, Li Zhuo, Cui Xiao. Numerical simulation on heat treatment deformation of GCr15 bearing rings[J]. Bearing, 2020(11): 45-49, 69. [6]王秋成, 张召明, 王 露, 等. GCr15钢深冷条件下的组织转变[J]. 低温工程, 2008(6): 24-27. Wang Qiucheng, Zhang Zhaoming, Wang Lu, et al. Transformation of microstructure of GCr15 steel under cryogenic treatment condition[J]. Cryogenics, 2008(6): 24-27. [7]余先涛, 张皓然, 屠梦莹, 等. 轴承套圈热处理工艺及其装备[J]. 金属热处理, 2018, 43(10): 86-89. Yu Xiantao, Zhang Haoran, Tu Mengying, et al. Heat treatment process and equipment for bearing rings[J]. Heat Treatment of Metals, 2018, 43(10): 86-89. [8]刘 波, 黄晓艳. 2016版高碳铬轴承钢标准解析[J]. 轴承, 2017(12): 59-63. Liu Bo, Huang Xiaoyan. Interpretation of 2016 edition of high-carbon chromium bearing steel standard[J]. Bearing, 2017(12): 59-63. [9]李志强. GCr15轴承钢加热过程中组织演变规律的实验和模拟[D]. 北京: 北京科技大学, 2017. Li Zhiqing. Experiment and simulation research on the structure evolution of GCr15 bearing steel during heating process[D]. Beijing: University of Science and Technology Beijing, 2017. [10]Eggbauer A, Lukas M, Ressel G, et al. In situ analysis of the effect of high heating rates and initial microstructure on the formation and homogeneity of austenite[J]. Journal of Materials Science, 2019, 54(12): 9197-9212. [11]García De Andrés C. Application of dilatometric analysis to the study of solid-solid phase transformations in steels[J]. Materials Characterization, 2002, 48(1): 101-111. [12]Danon A, Servant C, Alamo A, et al. Heterogeneous austenite grain growth in 9Cr martensitic steels: Influence of the heating rate and the austenitization temperature[J]. Materials Science & Engineering A, 2003, 348(1): 122-132. [13]张伟强. 固态金属及合金中的相变[M]. 北京: 国防工业出版社, 2016. Zhang Weiqing. Phase Transformations in Solid Metals and Alloys[M]. Beijing: National Defense Industry Press, 2016. [14]Erich S. Anlaufzeit der austenitumwandlung[J]. Archiv Für Dassenhüttenwesen, 1935, 8(12): 565-567. [15]Ågren J, Vassilev G P. Computer simulations of cementite dissolution in austenite[J]. Materials Science and Engineering, 1984, 64(1): 95-103. [16]李俊杰, Godfrey Andrew, 刘 伟, 等. 连续加热条件下过共析钢奥氏体化研究[J]. 金属学报, 2014, 50(10): 1179-1188. Li Junjie, Godfrey Andrew, Liu Wei, et al. Investigation of austenitization during continuous heating process in hypereutectoid steels[J]. Acta Metallurgica Sinica, 2014, 50(10): 1179-1188. [17]徐 洲, 赵边城. 金属固态相变原理[M]. 北京: 科学出版社, 2004. |