[1]李新创. 新时代钢铁工业高质量发展之路[J]. 钢铁, 2019, 54(1): 1-7. Li Xinchuang. Road map to high-quality development of iron and steel industry in new age[J]. Iron and Steel, 2019, 54(1): 1-7. [2]朱 滔, 尹洪顶. 新冠肺炎疫情影响下我国钢铁工业发展思路[J]. 重型机械, 2020(4): 1-5. Zhu Tao, Yin Hongding. Development thinking of China's iron and steel industry under the influence of novel coronavirus pneumonia epidemic[J]. Heavy Machinery, 2020(4): 1-5. [3]Ritchie R O. The conflicts between strength and toughness[J]. Natural Materials, 2011(10): 817-822. [4]Lee C G, Kim S, Lee T, et al. Effects of volume fraction and stability of retained austenite on formability in a 0.1C-1.5Si-1.5Mn-0.5Cu TRIP-aided cold-rolled steel sheet[J]. Materials Science and Engineering A, 2004, 371(1/2): 16-23. [5]Pierman A P, Bouaziz O, Pardoen T, et al. The influence of microstructure and composition on the plastic behaviour of dual-phase steels[J]. Acta Materialia, 2014, 73: 298-311. [6]Speer J, Matlock D K, Cooman B C D, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [7]钟 宁. 高强度Q&P钢和Q-P-T钢的研究[D]. 上海: 上海交通大学, 2009. Zhong Ning. Research on high strength Q&P and Q-P-T steels[D]. Shanghai: Shanghai Jiao Tong University, 2009. [8]徐祖耀. 钢热处理的新工艺[J]. 热处理, 2007(1): 1-11. Xu Zuyao. New processes for steel heat treatment[J]. Heat Treatment, 2007(1): 1-11. [9]John G Speer, David K Matlock. Q&P钢热处理工艺的开发进展(英文)[J]. 世界钢铁, 2009, 9(1): 31-35. John G Speer, David K Matlock. Developments in the quenching and partitioning process[J]. World Steel, 2009, 9(1): 31-35. [10]张玉杰, 王存宇, 刘文忠, 等. 变形温度对淬火配分钢微观组织和硬度的影响[J]. 材料热处理学报, 2013, 34(5): 97-102. Zhang Yujie, Wang Cunyu, Liu Wenzhong, et al. Effect of deformation temperature on microstructure and hardness of a low carbon alloyed steel treated by quenching and partitioning process[J]. Transactions of Materials and Heat Treatment, 2013, 34(5): 97-102. [11]王存宇, 常 颖, 杨 洁, 等. 热变形和淬火配分处理的复合作用对低碳合金钢马氏体相变机制的影响[J]. 金属学报, 2015, 51(8): 913-919. Wang Cunyu, Chang Ying, Yang Jie, et al. The combined effect of hot deformation plus quenching and partitioning treatment on martensite transformation of low carbon alloyed steel[J]. Acta Metallurgica Sinica, 2015, 51(8): 913-919. [12]李智超. Ms点的碳当量计算法[J]. 辽宁工程技术大学学报(自然科学版), 1998, 17(3): 293-295. Li Zhichao. Carbon equivalent meter algorithm for Ms point[J]. Journal of Liaoning Technical University(Nature Science), 1998, 17(3): 293-295. [13]丁树彭, 吴国梁, 宋 哲, 等. 45钢在箱式炉中淬火加热时间的研究[J]. 金属热处理, 1980(8): 23-32. Ding Shupeng, Wu Guoliang, Song Zhe, et al. Research on quenching heating time of 45 steel in box furnace[J]. Heat Treatment of Metals, 1980(8): 23-32. [14]崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2007. [15]Clarke A J, Speer J G, Miller M K, et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment[J]. Acta Materialia, 2008, 56(1): 16-22. [16]Toji Y, Matsuda H, Herbig M, et al. Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy[J]. Acta Materialia, 2014, 65: 215-228. [17]谭小东, 许云波, 杨小龙, 等. 一步淬火分配钢的工艺设计与微观组织演变[J]. 东北大学学报(自然科学版), 2014, 35(5): 681-685. Tan Xiaodong, Xu Yunbo, Yang Xiaolong, et al. Process design and microstructure evolution of one-step quenched and partitioned steel[J]. Journal of Northeastern University (Natural Science), 2014, 35(5): 681-685. [18]李金鑫, 黄兴民, 张 雷, 等. 淬火配分处理对锻态Fe-0.2C-9Mn-3.5Al钢显微组织及力学行为的影响[J]. 金属热处理, 2020, 45(2): 87-93. Li Jinxin, Huang Xingmin, Zhang Lei, et al. Influence of quenching and partitioning treatment on microstructure and mechanical behaviors of forged Fe-0.2C-9Mn-3.5Al steel[J]. Heat Treatment of Metals, 2020, 45(2): 87-93. [19]薛瑞锋, 冯运莉, 刘天宇. 温轧温度对中碳马氏体钢组织演变和力学性能的影响[J]. 热加工工艺, 2018, 47(9): 1-5. Xue Ruifeng, Feng Yunli, Liu Tianyu. Effects of warm rolling temperature on microstructure evolution and mechanical properties of medium carbon martensite steel[J]. Hot Working Technology, 2018, 47(9): 1-5. [20]Kumar A, Singh S B, Ray K K. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels[J]. Materials Science and Engineering A, 2008, 474(1/2): 270-282. [21]Li Z C, Misra R D K, Cai Z H, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3A1-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect[J]. Materials Science and Engineering A, 2016, 673: 63-72. [22]Cai Z H, Ding H, Misra R D K, et al. Unique serrated flow dependence of critical stress in a hot-rolled Fe-Mn-Al-C steel[J]. Scripta Materialia, 2014, 71: 5-8. [23]王卫永, 刘天姿. 高强Q460钢高温冷却后力学性能研究[J]. 建筑材料学报, 2016, 19(1): 171-176. Wang Weiyong, Liu Tianzi. Study on mechanical properties of high strength Q460 steel after cooling from high temperature[J]. Journal of Building Materials, 2016, 19(1): 171-176. [24]钟群鹏, 赵子华, 张 峥. 断口学的发展及微观断裂机理研究[J]. 机械强度, 2005(3): 358-370. Zhong Qunpeng, Zhao Zihua, Zhang Zheng. Development of "fractography" and research of fracture micromechanism[J]. Journal of Mechanical Strength, 2005(3): 358-370. [25]李秀程, 谢振家, 王学林, 等. 高强度低碳贝氏体钢拉伸断口分离现象及机理研究[J]. 金属学报, 2013, 49(2): 167-174. Li Xiucheng, Xie Zhenjia, Wang Xuelin, et al. Split fracture phenomenon and mechanism in tensile tests of high strength low carbon bainitic steel[J]. Acta Metallurgica Sinica, 2013, 49(2): 167-174. |