[1]Yasuhiro M, Takashi A, Masayuki H. High performance steel plates for construction and industrial machinery use-New steel plates for construction and industrial machinery use with high strength and superior toughness combined with good weldability and formability[J]. JFE Technical Report, 2005(5): 60-65. [2]徐 明, 陆建锋, 李红兵, 等. 考虑节点域加强的Q690GJ高强钢梁柱节点抗震性能试验研究[J]. 钢结构, 2016, 31(3): 6-13. Xu Ming, Lu Jianfeng, Li Hongbing, et al. Experimental research on the aseismic behavior of Q690GJ high strength steel beam-to-column connections considering reinforced panel zone[J]. Steel Construction, 2016, 31(3): 6-13. [3]康 健, 王昭东, 王国栋, 等. 780 MPa级低屈强比高层建筑用钢的生产工艺研究[J]. 钢铁, 2010, 45(7): 71-75. Kang Jian, Wang Zhaodong, Wang Guodong, et al. Study on the production process of 780 MPa grade steel plates with low yield ratio for high-rise buildings[J]. Iron and Steel, 2010, 45(7): 71-75. [4]王学武. 金属力学性能[M]. 北京: 机械工业出版社, 2010. [5]关国军, 穆振芬, 王 欣, 等. 无塑性转变温度(NDTT)实质的探讨[J]. 材料科学与工艺, 1996, 4(1): 55-59. Guan Guojun, Mu Zhenfeng, Wang Xin, et al. Study of the nature of nil-ductility transition temperature(NDTT)[J]. Material Science and Technology, 1996, 4(1): 55-59. [6]郑香增, 夏佃秀, 李兴芳. 落锤试验测定船板的无塑性转变温度[J]. 山东冶金, 2004, 26(1): 57-58. Zheng Xiangzeng, Xia Dianxiu, Li Xingfang. Determination of nilductility transition temperature of ship plate by drop weight test[J]. Shandong Metallurgy, 2004, 26(1): 57-58. [7]Hyo Kyung Sung, Sang Yongshin, Byoungchul Hwang, et al. Effects of rolling and cooling conditions on microstructure and tensile and charpy impact properties of ultra-low-carbon high-strength bainitic steels[J]. Metallurgical and Materials Transactions A, 2011, 42(7): 1827-1835. [8]徐祖耀. 钢热处理的新工艺[J]. 热处理, 2007, 22(1): 1-11. Xu Zuyao. New process for steel heat treatment[J]. Heat Treatment, 2007, 22(1): 1-11. [9]Speer J, Matlock D, De Cooman B, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [10]Byoungchul Hwang, Yang Gon Kim, Sunghak Lee, et al. Effective grain size and Charpy impact properties of high-toughness X70 pipeline steels[J]. Metallurgical and Materials Transactions A, 2005, 36(8): 2107-2114. [11]任勇强, 谢振家, 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响[J]. 金属学报, 2012, 48(9): 1074-1080. Ren Yongqiang, Xie Zhenjia, Shang Chengjia. Regulation of retained austenite and its effect on the mechanical properties of low carbon steel[J]. Acta Metallurgica Sinica, 2012, 48(9): 1074-1080. [12]田亚强, 张宏军, 陈连生, 等. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响[J]. 金属学报, 2014, 50(5): 531-539. Tian Yaqiang, Zhang Hongjun, Chen Liansheng, et al. Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel[J]. Acta Metallurgica Sinica, 2014, 50(5): 531-539. [13]刘伟东, 屈 华, 刘秉余, 等. 材料结构与力学性质[M]. 北京: 冶金工业出版社, 2012. [14]谢振家, 尚成嘉, 周文浩, 等. 低合金多相钢中残余奥氏体对塑性和韧性的影响[J]. 金属学报, 2016, 52(2): 224-232. Xie Zhenjia, Shang Chengjia, Zhou Wenhao, et al. Effect of retained austenite on ductility and toughness of a low alloyed multi-phase steel[J]. Acta Metallurgica Sinica, 2016, 52(2): 224-232. [15]Kang J, Wang C, Wang G D. Microstructural characteristics and impact fracture behavior of a high-strength low-alloy steel treated by intercritical heat treatment[J]. Materials Science and Engineering A, 2012, 553: 96-104. |