[1]邓通武. 钒对25CrMnB钢履带板耐磨性能的影响[J]. 特殊钢, 2019, 40(5): 67-70.  Deng Tongwu. Effect of vanadium on wear resistance of track shoe of steel 25CrMnB[J]. Special Steel, 2019, 40(5): 67-70.  [2]赵 基, 杜 超. 25MnB履带板用钢的热处理工艺[J]. 金属热处理, 2015, 40(10): 192-194.  Zhao Ji, Du Chao. Heat treatment process of 25MnB steel track board[J]. Heat Treatment of Metals, 2015, 40(10): 192-194.  [3]张 群, 王德勇, 阚 开. 连续冷却速度对挖掘机履带用钢15B36-M相变和显微组织的影响[J]. 金属热处理, 2020, 45(5): 115-118.  Zhang Qun, Wang Deyong, Kan Kai. Effect of continuous cooling rate on phase transformation and microstructure of 15B36-M track steel for excavator[J]. Heat Treatment of Metals, 2020, 45(5): 115-118.  [4]邓通武. 25CrMnB钢228节距履带的热处理工艺[J]. 金属热处理, 2012, 37(12): 89-91.  Deng Tongwu. Heat treatment process of 25CrMnB steel 228 pitch crawler belt[J]. Heat Treatment of Metals, 2012, 37(12): 89-91.  [5]朱鹏霄, 李 毅, 冯 坤, 等. 淬火温度对25CrMnB钢组织与性能的影响[J]. 金属热处理, 2018, 43(1): 175-178.  Zhu Pengxiao, Li Yi, Feng Kun, et al. Effect of quenching temperature on microstructure and properties of 25CrMnB steel[J]. Heat Treatment of Metals, 2018, 43(1): 175-178.  [6]康永林, 朱国明. 大型H型钢轧制过程数值模拟及应用[J]. 山东冶金, 2009, 31(5): 1-4.  Kang Yonglin, Zhu Guoming. Large size H-beams rolling process numerical simulation and application[J]. Shandong Metallurgy, 2009, 31(5): 1-4.  [7]程 鼎, 薛东妹, 潘 涛, 等. 微合金化H型钢轧后空冷的温度场及组织和性能[J]. 钢铁研究学报, 2009, 21(7): 33-36.  Cheng Ding, Xue Dongmei, Pan Tao, et al. Temperature field of microalloyed H beam after hot rolling and its influence on microstructure and mechanical performance[J]. Journal of Iron and Steel Research, 2009, 21(7): 33-36.  [8]祖方遒. 材料成形基本原理[M]. 北京: 机械工业出版社, 2010.  [9]霍建生, 阎 冬. 700 MPa级高强度耐候钢过冷奥氏体连续冷却相变行为[J]. 金属热处理, 2021, 46(7): 94-98.  Huo Jiansheng, Yan Dong. Continuous cooling transformation behavior of undercooled austenite of 700 MPa high strength weathering resistance steel[J]. Heat Treatment of Metals, 2021, 46(7): 94-98.  [10]Taylor K A. Grain-boundary segregation and precipitation of boron in 0.2 percent carbon steels[J]. Metallurgical and Materials Transactions A, 1992, 23(1): 107-119.  [11]李晓鹏, 党孟军, 张艳芳. 网状铁素体对盘条性能的影响[J]. 金属制品, 1999(2): 29-31.  Li Xiaopeng, Dang Mengjun, Zhang Yanfang. Effect of ferrite net on the mechanical properties of wire rods[J]. Steel Wire Products, 1999(2): 29-31.  [12]Mazancová E, Mazanec K. Physical metallurgy characteristics of the M/A constituent formation in granular bainite[J]. Journal of Materials Processing Technology, 1997, 64(1): 287-292.  [13]Chen J, Tang S, Liu Z Y, et al. Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel[J]. Materials Science and Engineering A, 2013, 559: 241-249.  [14]Tian D, Karjalainen L P, Qian B, et al. Cleavage fracture model for granular bainite in simulated coarse-grained heat-affected zones of high-strength low-alloyed steels[J]. JSME International Journal, 1997, 40(2): 179-188.  [15]Luo Yi, Peng Jinmin, Wang Hongbin, et al. Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel[J]. Materials Science and Engineering A, 2010, 527(15): 3433-3437.  [16]徐祖耀. 低锰钢的锰偏析[M]. 北京: 冶金工业出版社, 1979.  [17]许 映, 刘 涛, 龙 威, 等. B+级铸钢中粒状贝氏体的形成原因分析[J]. 材料热处理学报, 2019, 40(8): 105-109.  Xu Ying, Liu Tao, Long Wei, et al. Cause analysis of granular bainite formation in B+grade cast steel[J]. Transactions of Materials and Heat Treatment, 2019, 40(8): 105-109.  [18]裴丙红, 张红斌, 曹美姣, 等. 论GH901合金真空熔炼铸锭中硼的宏观偏析[J]. 特钢技术, 2006, 12(3): 5-13.  Pei Binghong, Zhang Hongbin, Cao Meijiao, et al. Argumentation on themacrosegregation of boron in vacuum melting pouring ingot of GH901 alloy[J]. Special Steel Technology, 2006, 12(3): 5-13.  [19]冉 旭, 陈 莉, 邬占田, 等. 20CrMnTi钢粒状贝氏体的消除[J]. 吉林工学院学报, 1999, 20(2): 15-20.  Ran Xu, Chen Li, Wu Zhantian, et al. Elimination of granular bainite in 20CrMnTi steel[J]. Journal of Jilin Institute of Technology, 1999, 20(2): 15-20. |