[1]景财年. 相变诱发塑性钢的组织性能[M]. 北京: 冶金工业出版社, 2012. [2]Gerdemann F L H, Speer J G, Matlock D K. Microstructure and hardness of steel grade 9260 heat-treated by the quenching and partitioning (Q&P) process[J]. Materials Science and Technology, 2004, 1: 439-449. [3]涂英明, 景财年. 高强度淬火-配分钢的研究现状及发展方向[J]. 金属热处理, 2017, 42(9): 132-137. Tu Yingming, Jing Cainian. Research status and development trend of high strength quenching and partitioning steel[J]. Heat Treatment of Metals, 2017, 42(9): 132-137. [4]Fischer F D, Reisner G, Werner E, et al. A new view on transformation induced plasticity (TRIP)[J]. International Journal of Plasticity, 2000, 16(7): 723-748. [5]Cherkaoui M, Berveiller M, Lemoine X. Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels[J]. International Journal of Plasticity, 2000, 16(10): 1215-1241. [6]王亚婷, 万德成, 冯树明, 等. 淬火温度对中锰QP钢组织和性能的影响[J]. 金属热处理, 2020, 45(5): 172-176. Wang Yating, Wan Dengcheng, Feng Shuming, et al. Effect of quenching temperature on microstructure and mechanical properties of medium manganese QP steel[J]. Heat Treatment of Metals, 2020, 45(5): 172-176. [7]万德成, 杨晓彩, 王 芳, 等. 一步配分处理中碳低合金DQP钢的组织演变[J]. 金属热处理, 2018, 43(12): 42-46. Wan Decheng, Yang Xiaocai, Wang Fang, et al. Microstructure evolution of medium carbon low alloy DQP steel after direct quenching and isothermal partitioning[J]. Heat Treatment of Metals, 2018, 43(12): 42-46. [8]苏 航. 热力学、动力学计算技术在钢铁材料研究中的应用[M]. 北京: 科学出版社, 2012. [9]Fei Huyan, Hedström Peter, Höglund Lars, et al. Athermodynamic-based model to predict the fraction of martensite in steels[J]. Metallurgical and Materials Transactions A, 2016, 47(9): 4404-4410. [10]Edmonds D, He K, Rizzo F, et al. Quenching and partitioning martensite-A novel steel heat treatment[J]. Materials Science and Engineering A, 2006, 438: 25-34. [11]Speer J G, Matlock D K, De Cooman B C, et al. Comments on “On the definitions of paraequilibrium and orthoequilibrium”[J]. Scripta Materialia, 2005, 52(1): 83-85. [12]谢振家. 高性能低合金钢中残留奥氏体调控机理及性能研究[D]. 北京: 北京科技大学, 2016. [13]付 波. 高强韧多相钢工艺, 组织, 性能及相互关系的物理模拟[D]. 北京: 北京科技大学, 2015. [14]Jiang H T, Tang D, Mi Z L, et al. Effect of partitioning parameters on the retained austenite in low-carbon Q&P steel[J]. Materials Science and Technology, 2011, 19(1): 99-103. [15]Clarke A J, Speer J G, Matlock D K, et al. Influence of carbon partitioning kinetics on final austenite during quenching and partitioning[J]. Scripta Materialia, 2009, 61(2): 149-152. [16]周 媛, 李 麟, 史 文, 等. Si-Mn系TRIP钢两相区等温处理的组织转变模拟[J]. 材料热处理学报, 2002, 23(1): 15-18. Zhou Yuan, Li Lin, Shi Wen, et al. Computer simulations of transformations during intercritical annealing in silicon-manganese TRIP steel[J]. Transactions of Materials and Heat Treatment, 2002, 23(1): 15-18. [17]王晓东. TRIP钢微结构-性能的表征与设计[D]. 上海: 上海交通大学, 2006. [18]田亚强, 张宏军, 陈连生, 等. 低碳高强钢合金元素配分行为对残留奥氏体和力学性能的影响[J]. 金属学报, 2014, 50(5): 531-539. Tian Yaqiang, Zhang Hongjun, Chen Liansheng, et al. Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel[J]. Acta Metallurgica Sinica, 2014, 50(5): 531-539. [19]Van Bohemen S M C, Sietsma J. Effect of composition on kinetics of athermal martensite formation in plain carbon steels[J]. Materials Science and Technology, 2009, 25(8): 1009-1012. [20]Magee C L. The nucleation ofmartensite[J]. Phase transformations ASM International, 1970, 115: 115-156. [21]Lee S J, Tyne C. A kinetics model for martensite transformation in plain carbon and low-alloyed steels[J]. Metallurgical and Materials Transactions A, 2012, 43(2): 422-427. [22]Skrotzki B. The course of the volume fraction of martensite vs temperature function Mx(T)[J]. Le Journal de Physique IV, 1991, 1(C4): 367-372. [23]杨 栋. 低碳高强Q&P钢元素配分行为研究[D]. 唐山: 河北联合大学, 2014. |