[1]Stepanov G A, Stanotina V V. Properties of steel 12Kh18N10T tested for tensile strength in liquid helium cooled to 2. 4 K[J]. Metal Science and Heat Treatment, 2003, 45(9/10): 373-375. [2]Saucedo-Munoz M L, Watanabe Y, Shoji T, et al. Effect of microstructure evolution on fracture toughness in isothermally aged austenitic stainless steels for cryogenic application[J]. Cryogenics, 2000, 40(11): 693-700. [3]Tarasenko L V, Shal'Kevich A B. Phase composition and hardening of steels of the Fe-Cr-Ni-Co-Mo system with martensite-austenite structure[J]. Metal Science and Heat Treatment, 2007, 49(3/4): 188-193. [4]Anoop C R, Prakash A, Murty S V S N, et al. Origin of low temperature toughness in a 12Cr-10Ni martensitic precipitation hardenable stainless steel[J]. Materials Science and Engineering A, 2018, 709(1): 1-8. [5]Kagan E S, Potak Ya M, Sachkov V V, et al, High-strength steel for cryogenic temperatures[J]. Metal Science and Heat Treatment, 1971, 13(10): 821-822. [6]Lee S J, Park Y M, Lee Y K. Reverse transformation mechanism of martensite to austenite in a metastable austenitic alloy[J]. Materials Science and Engineering A, 2009, 515(1/2): 32-37. [7]Vasudevan V K, Kim S J, Wayman C M. Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels[J]. Metallurgical Transactions A, 1990, 21(10): 2655-2668. [8]Luo Haiwen, Wang Xiaohui, Liu Zhenbao, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel[J]. Journal of Materials Science and Technology, 2020, 51: 130-136. [9]Li X, Fan Y, Ma X, et al. Influence of martensite-austenite constituents formed at different intercritical temperatures on toughness[J]. Materials and Design, 2015, 67: 457-463. [10]Carlos García-Mateo, Francisca G Caballero. The role of retained austenite on tensile properties of steels with bainitic microstructures[J]. Materials Transactions, 2005, 46(8): 1839-1846. |