[1]Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy[J]. Annual Review of Materials Research, 2014, 44(1): 241-267. [2]肖厦子, 宋定坤, 楚海建, 等. 金属材料力学性能的辐照硬化效应[J]. 力学进展, 2015, 45(1): 141-178. Xiao Xiazi, Song Dingkun, Chu Haijian, et al. Irradiation hardening for metallic materials[J]. Advances in Mechanics, 2015, 45(1): 141-178. [3]葛昌纯. 面向等离子体材料与可控核聚变[J]. 中国科技财富, 2009(17): 28-31. [4]Wirth B D, Nordlund K, Whyte D G, et al. Fusion materials modeling: Challenges and opportunities[J]. Mrs Bulletin, 2011, 36(3): 216-221. [5]Avettand-Fènoёl M N, Taillard R, Dhers J. Effect of ball milling parameters on the microstructure of W-Y powders and sintered sample[J]. International Journal of Refractory Metals and Hard Materials, 2003, 21(3/4): 205-213. [6]Xu A, Beck C, Armstrong D E J, et al. Ion-irradiation-induced clustering in W-Re and W-Re-Os alloys: A comparative study using atom probe tomography and nanoindentation measurements[J]. Acta Materialia, 2015, 87: 121-127. [7]Lee Y J, Lee T H, Nersisyan H H, et al. Characterization of Ta-W alloy films deposited by molten salt multi-anode reactive alloy coating(MARC) method[J]. International Journal of Refractory Metals and Hard Materials, 2015, 53: 23-31. [8]Pintsuk G, Uytdenhouwen I. Thermo-mechanical and thermal shock characterization of potassium doped tungsten[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(6): 661-668. [9]Arshad K, Zhao M Y, Yuan Y, et al. Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys[J]. Journal of Nuclear Materials, 2014, 455(1/3): 96-100. [10]Ma Y, Han Q F, Zhou Z Y, et al. First-principles investigation on mechanical behaviors of W-Cr/Ti binaryalloys[J]. Journal of Nuclear Materials, 2016, 468: 105-112. [11]Suresh T, Patra A, Mitra R. Microstructure and cyclic oxidation behavior of W-Cr alloys prepared by sintering of mechanically alloyed nanocrystalline powders[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 191-203. [12]Ohser-Wiedemann R, Martin U, Müller A. Spark plasma sintering of Mo-W powders prepared by mechanical alloying[J]. Journal of Alloys and Compounds, 2013, 560: 27-32. [13]Kameel A, Wei G, Zhang Y, et al. Influence of vanadium precursor powder size on microstructures and properties of W-V alloy[J]. International Journal of Refractory Metals and Hard Materials, 2015, 50: 59-64. [14]Ayyagari A, Salloom R, Muskeri S, et al. Low activation high entropy alloys for next generation nuclear applications[J]. Materialia, 2018, 4: 99-103. [15]El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys[J]. Science Advances, 2019, 5(3): eaav2002. [16]Li X, Tian F, Vitos L, et al. Ab initio-predicted micro-mechanical performance of refractory high-entropy alloys[J]. Scientific reports, 2015, 5: 12334. [17]Liu G, Ding D F, Li J, et al. Combustion synthesis of W-Cr alloys with hierarchical microstructure and improved hardness[J]. Materials Letters, 2016, 166: 43-45. [18]Waseem O A, Lee J, Lee H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials[J]. Materials Chemistry and Physics, 2018, 210: 87-94. [19]Waseem O A, Ryu H J. Powder metallurgy processing of a WxTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications[J]. Scientific Reports, 2017, 7(1): 19-26. [20]Chen Chunliang, Zeng Yong. Influence of Ti content on synthesis and characteristics of W-Ti ODS alloy[J]. Journal of Nuclear Materials, 2016, 469: 1-9. [21]李荣斌, 黄 天, 蒋春霞, 等. TaWTiVCr高熵合金薄膜的制备及微观结构、力学性能研究[J]. 表面技术, 2020, 49(6): 159-167. Li Rongbin, Huang Tian, Jiang Chunxia, et al. Study on preparation, microstructure and mechanical properties of TaWTiVCr high entropy alloy thin film[J]. Surface Technology, 2020, 49(6): 159-167. [22]Zhang W, Zhang Y. Science and technology in high-entropy alloys[J]. Science China Science, 2018, 61(1): 2-22. [23]Lin N M, Liu Q, Zou J J, et al. Surface damage mitigation of Ti6Al4V alloy via thermal oxidation for oil and gas exploitation application: Characterization of the microstructure and evaluation of the surface performance[J]. RSC Advances, 2017, 7(22): 13517-13535. [24]王成彪. 摩擦学材料及表面工程[M]. 北京: 国防工业出版社, 2012. [25]Lu Tianwei, Feng Chuangshi, Wang Zheng, et al. Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition[J]. Applied Surface Science, 2019, 494(15): 72-79. [26]Chai W, Lu T, Pan Y. Corrosion behaviors of FeCoNiCrx (x=0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation[J]. Intermetallics, 2020, 116: 106654. [27]Li W, Liu G, Guo J. Microstructure and electrochemical properties of AlFeCuCoNiCrTix high entropy alloys[J]. Special Casting and Nonferrous Alloys, 2009, 29(10): 941-944. [28]Shang X L, Wang Z J, Feng H E, et al. The intrinsic mechanism of corrosion resistance for FCC high entropy alloys[J]. Science China, 2018, 61(2): 189-196. |