[1]张 翥, 王群骄, 莫 畏. 钛的金属学和热处理[M]. 北京: 冶金工业出版社, 2009: 1-4. [2]夏晓洁, 吴国清, 黄 正, 等. 固溶时效处理对高强高韧钛合金显微组织与力学性能的影响[J]. 北京航空航天大学学报, 2015, 41(7): 1294-1299. Xia Xiaojie, Wu Guoqing, Huang Zheng, et al. Effects of solution-aging treatment on microstructure and mechanical properties of a high-strength and high-toughness titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1294-1299. [3]Shekhar S, Sarkar R, Kar S K, et al. Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy Ti-5Al-5V-5Mo-3Cr[J]. Materials and Design, 2015, 66: 596-610. [4]Ren L, Xiao W L, Chang H, et al. Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment[J]. Materials Science and Engineering: A, 2018, 711: 553-561. [5]Ahmed M, Li T, Casillas G, et al. The evolution of microstructure and mechanical properties of Ti-5Al-5Mo-5V-2Cr-1Fe during ageing[J]. Journal of Alloys and Compounds, 2015, 629: 260-273. [6]Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013, 61(3): 844-879. [7]Li C, Chen J, Li W, et al. Effect of heat treatment variations on the microstructure evolution and mechanical properties in a β metastable Ti alloy[J]. Journal of Alloys and Compounds, 2016, 684: 466-473. [8]Manda P, Nandam S R, Chakkingal U, et al. Microstructure, texture and mechanical properties of hot rolled metastable β-titanium alloy Ti-5Al-3.5Mo-7.2V-3Cr[J]. Materials Today: Proceedings, 2017, 4(2): 851-856. [9]Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy[J]. Journal of Alloys and Compounds, 2014, 586: 588-592. [10]Du Z X, Xiao S L, Xu L J, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy[J]. Materials and Design, 2014, 55: 183-190. [11]赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012: 128-155. [12]Zhu W G, Sun Q Y, Tan C S, et al. Tensile brittleness and ductility improvement in a novel metastable β titanium alloy with lamella structure[J]. Journal of Alloys and Compounds, 2020, 827: 154311. [13]Dong R F, Li J S, Kou H C, et al. ω-assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy[J]. Journal of Materials Science and Technology, 2020, 44(9): 26-32. [14]Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. Journal of Alloys and Compounds, 2008, 457: 296-309. [15]Li C L, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titaniumalloy[J]. Journal of Alloys and Compounds, 2013, 550: 23-30. [16]Du Z, Ma Y, Liu F, et al. Improving mechanical properties of near beta titanium alloy by high-low duplex aging[J]. Materials Science and Engineering: A, 2019, 754(29): 702-707. [17]Du Z, Guo H, Liu J, et al. Microstructure evolution during aging heat treatment and its effects on tensile properties and dynamic Young's modulus of a biomedical β titanium alloy[J]. Materials Science and Engineering A, 2020, 791: 139677. [18]Zhu W G, Kou W, Tan C, et al. Face centered cubic substructure and improved tensile property in a novel β titanium alloy Ti-5Al-4Zr-10Mo-3Cr[J]. Materials Science and Engineering A, 2019, 771: 138611. [19]王安东, 张禄祥, 陈彩凤, 等. 固溶时效处理对Ti-5322钛合金组织与性能的影响[J]. 金属热处理, 2020, 45(12): 24-28. Wang Andong, Zhang Luxiang, Chen Caifeng, et al. Effect of solution and aging treatment on microstructure and tensile properties of Ti-5322 alloy[J]. Heat Treatment of Metals, 2020, 45(12): 24-28. [20]乔 虹, 刘运玺, 陈 玮, 等. 热处理对EBM Ti-4Al-5V-5Mo-6Cr-1Nb合金显微组织与拉伸性能的影响[J]. 航空制造技术, 2020, 63(19): 85-90. Qiao Hong, Liu Yunxi, Chen Wei, et al. Effect of heat treatment on microstructure and tensile properties of EBM Ti-4Al-5V-5Mo-6Cr-1Nb alloy[J]. Aeronautical Manufacturing Technology, 2020, 63(19): 85-90. [21]Zhang H Y, Li X H, Lin L, et al. Effect of aging temperature on microstructural evolution and mechanical properties of a novel β titanium alloy[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3812-3818. [22]Zhu W G, Lei J, Tan C S, et al. A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: The superior combination of strength andductility[J]. Materials and Design, 2019, 168: 107640. [23]Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength[J]. Nature Communications, 2016, 7: 11176. [24]Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength[J]. Scripta Materialia, 2018, 154: 139-144. [25]Terlinde G T, Duerig T W, Williams J C. Microstructure, tensile deformation, and fracture in aged Ti-10V-2Fe-3Al[J]. Metallurgical Transactions A, 1983, 14(10): 2105-2115. [26]Vinjamuri R, Bishoyi B D, Sabat R K, et al. Microstructure, texture, mean free path of dislocations and mechanical properties of Ti-6A1-4V alloy during uniaxial compression at elevated temperatures[J]. Materials Science and Engineering: A, 2020, 776: 139042. [27]Julia R G, Warren C O, William D N. Size dependence of mechanical properties of gold at the micron scale in the absence of straingradients[J]. Acta Materialia, 2005, 53(6): 1821-1830. |