[1]王 涛, 齐艳阳, 刘江林, 等. 金属层合板轧制复合工艺国内外研究进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 42-56. Wang Tao, Qi Yanyang, Liu Jianglin, et al. Research progress of metal laminates roll bonding process at home and abroad[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 42-56. [2]黎 旭, 冯中学, 史庆南. 钛-钢复合材料制备技术及性能研究进展[J]. 稀有金属, 2018, 42(10): 1103-1113. Li Xu, Feng Zhongxue, Shi Qingnan, et al. Progress in preparation technology and properties of titanium-steel composites[J]. Chinese Journal of Rare Metals, 2018, 42(10): 1103-1113. [3]Hsieh P J, Hung Y P, Huang J C. Transformation into nano-crystalline or amorphous materials in Zr-X binary systems using ARB route[J]. Scripta Materialia, 2003, 49(2): 173-178. [4]周生刚, 王 涛, 孙丽达. 金属层状复合材料的研究现状[J]. 热加工工艺, 2016, 45(10): 15-20. Zhou Shenggang, Wang Tao, Sun Lida, et al. Research status of metal laminar composite[J]. Hot Working Technology, 2016, 45(10): 15-20. [5]陈连生, 张鑫磊, 郑小平, 等. 轧制双金属复合板材的研究现状[J]. 稀有金属材料与工程, 2018, 47(10): 3243-3250. Chen Liansheng, Zhang Xinlei, Zheng Xiaoping, et al. Research status of bimetal laminated composite plate prepared by rolling process[J]. Rare Metal Materials and Engineering, 2018, 47(10): 3243-3250. [6]Takahashi Y, Inoue K, Nishiguchi K. Identification of void shrinkage mechanisms[J]. Acta Metallurgica et Materialia, 1993, 41(11): 3077-3084. [7]刘国平, 王渠东, 蒋海燕. 铜/铝双金属复合材料研究新进展[J]. 材料导报, 2020, 34(7): 7115-7122. Liu Guoping, Wang Qudong, Jiang Haiyan, et al. New research progress on copper/aluminum bimetallic composites[J]. Materials Reports, 2020, 34(7): 7115-7122. [8]徐圣航, 周承商, 刘 咏. 金属-金属层状结构复合材料研究进展[J]. 中国有色金属学报, 2019, 29(6): 1125-1142. Xu Shenghang, Zhou Chengshang, Liu Yong, et al. Research progress in metal-metal laminated structural composites[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(6): 1125-1142. [9]邓 斌, 刘文磊, 王 博, 等. 某新型商用车复合材料板簧轻量化研究[J]. 汽车实用技术, 2021, 46(17): 88-90. Deng Bin, Liu Wenlei, Wang Bo, et al. Light weight research on composite leaf spring of a new commercial vehicle[J]. Automobile Applied Technology, 2021, 46(17): 88-90. [10]Kumar R V, Keshavamurthy R, Perugu C S, et al. Influence of hot rolling on friction and wear behaviour of Al6061-ZrB2 in-situ metal matrix composites[J]. Journal of Manufacturing Processes, 2021, 69: 473-490. [11]于化顺. 金属基复合材料及其制备技术[M]. 北京: 化学工业出版社, 2006. [12]张志娟, 张 兵, 赵田丽, 等. 轧制三金属复合材料研究进展[J]. 精密成形工程, 2021, 13(6): 23-34. Zhang Zhijuan, Zhang Bing, Zhao Tianli, et al. Research progress of tri-metal composites prepared by rolling process[J]. Journal of Netshape Forming Engineering, 2021, 13(6): 23-34. [13]吴 昊, 熊 桑, 张 渤, 等. 冷轧参数对铜/钢复合板结合情况的影响[J]. 塑性工程学报, 2021, 28(8): 75-82. Wu Hao, Xiong Sang, Zhang Bo, et al. Influence of cold rolling parameters on bonding of copper/steel clad plate[J]. Journal of Plasticity Engineering, 2021, 28(8): 75-82. [14]崔玉豪, 曹远奎, 李 娜, 等. Ti-Cu-Mo层状复合材料的轧制行为与力学性能[J]. 粉末冶金材料科学与工程, 2021, 26(4): 346-354. Cui Yuhao, Cao Yuankui, Li Na, et al. Rolling behavior and mechanical properties of Ti-Cu-Mo laminated composites[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(4): 346-354. [15]崔 岩, 彭喜英, 李新靓, 等. Ni/Al复合材料在累积叠轧制备过程中的组织演变和力学分析[J]. 材料热处理学报, 2020, 41(6): 1-6. Cui Yan, Peng Xiying, Li Xinliang, et al. Microstructure evolution and mechanical analysis of Ni/Al composites during preparation of accumulative roll bonding (ARB)[J]. Transactions of Materials and Heat Treatment, 2020, 41(6): 1-6. [16]崔 岩, 王利成, 董常青, 等. 累积叠轧制备Ni/Al多层复合材料[J]. 热加工工艺, 2019, 48(24): 78-80. Cui Yan, Wang Licheng, Dong Changqing, et al. Preparation of Ni/Al multilayer composites by accumulative roll bonding[J]. Hot Working Technology, 2019, 48(24): 78-80. [17]王秋雨, 张 兵, 赵田丽, 等. 轧制复合制备TA1/AZ31B/TA1层状复合材料组织与性能研究[J]. 重型机械, 2019, 5(3): 22-28. Wang Qiuyu, Zhang Bing, Zhao Tianli, et al. Study on microstructure and properties of TA1/AZ31B/TA1 laminated composites produced by roll bonding[J]. Heavy Machinery, 2019, 5(3): 22-28. [18]Mojtaba D, Fathallah Q, Mahdi G, et al. Effect of inter-cycle heat treatment in accumulative roll-bonding (ARB) process on planar isotropy of mechanical properties of AA1050 sheets[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2381-2393. [19]Adnan I, Khdair A Fathy. Enhanced strength and ductility of Al-SiC nanocomposites synthesized by accumulative roll bonding[J]. Journal of Materials Research and Technology, 2020, 9(1): 478-489. [20]李小兵, 蒋国民, 王 强, 等. 钢/铝层状复合板的拉伸力学性能与界面失效过程[J]. 中国有色金属学报, 2021, 31(8): 2125-2135. Li Xiaobing, Jiang Guomin, Wang Qiang, et al. Mechanical properties and interface failure behavior of steel/Al laminated composite sheets during tensile test[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(8): 2125-2135. [21]冯菲玥, 陈云霞. 铝/钢异种金属焊接技术的研究现状[J]. 焊接技术, 2021, 50(1): 1-8. Feng Feiyue, Chen Yunxia. A review of the research on aluminum/steel dissimilar metal welding techniques[J]. Welding Technology, 2021, 50(1): 1-8. [22]高勃兴, 邹德坤, 谢红飙, 等. 铝/钢轧制复合有限元二次开发模拟与实验研究[J]. 精密成形工程, 2021, 13(6): 56-63. Gao Boxing, Zou Dekun, Xie Hongbiao, et al. Simulation and experimental study on finite element secondary development of aluminum/steel rolling composite[J]. Journal of Netshape Forming Engineering, 2021, 13(6): 56-63. [23]陈大林. 铝钢异种金属焊接研究现状[J]. 兰州石化职业技术学院学报, 2021, 21(1): 21-25. Chen Dalin. Research status of aluminum steel dissimilar metals welding[J]. Journal of Lanzhou Petrochemical Polytechnic, 2021, 21(1): 21-25. [24]Kévin V, Laurent P, Anne L H, et al. Magnetic shielding at low frequencies: Application for an aluminum/steel composite elaborated by accumulative roll bonding[J]. Advanced Engineering Materials, 2019, 21(4): 1-8. [25]Fu L, Xiao H, Yu C, et al. Bonding enhancement of cold rolling Al/steel composite plates via self-nano film modification[J]. Journal of Materials Processing Technology, 2022, 72(5): 300-312. [26]Clérico P, Mininger X, Prévond L, et al. Compromise between magnetic shielding and mechanical strength of thin Al/steel/Al sandwiches produced by cold roll bonding: Experimental and numerical approaches[J]. Journal of Alloys and Compounds, 2019, 59(5): 798-825. [27]Milad T, Mostafa A. Manufacturing Al/steel multilayered composite by accumulative roll bonding and the effects of subsequent annealing on the microstructural and mechanical characteristics[J]. Materials Science and Engineering A, 2014, 590: 186-193. [28]王 鸣, 王 杰, 赵 杰, 等. 退火温度对08Al冷轧板力学性能的影响[J]. 材料热处理学报, 2015, 36(S1): 107-110. Wang Ming, Wang Jie, Zhao Jie, et al. Effect of annealing temperature on mechanical properties of 08Al cold-rolled sheet[J]. Transactions of Materials and Heat Treatment, 2015, 36(S1): 107-110. [29]王 鸣, 张 旭, 赵 阳, 等. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(2): 1395-1406. Wang Ming, Zhang Xu, Zhao Yang, et al. Effect of rolling elongation on the mechanical properties of IF steel foil[J]. Materials Reports, 2020, 34(2): 1395-1406. [30]吴圣川, 李存海, 张 文, 等. 金属材料疲劳裂纹扩展机制及模型的研究进展[J]. 固体力学学报, 2019, 40(6): 489-538. Wu Shengchuan, Li Cunhai, Zhang Wen, et al. Recent research progress on mechanisms and models of fatigue crack growth for metallic materials[J]. Chinese Journal of Solid Mechanics, 2019, 40(6): 489-538. |