[1]肖新华, 李辉燕. 镍铬基合金管结构GTAW打底焊接变形和残余应力的有限元预测[J]. 热加工工艺, 2013, 42(13): 171-173. Xiao Xinhua, Li Huiyan. Finite element prediction of residual stress and deformation for nickel-chromium based alloy tube structure GTAW bottom welding[J]. Hot Working Technology, 2013, 42(13): 171-173. [2]陈志超, 陈广帅, 朱庆波, 等. 镍基自熔合金的氩弧堆焊工艺研究[J]. 焊接技术, 2019, 40(8): 58-61. Chen Zhichao, Chen Guangshuai, Zhu Qingbo, et al. Study on argon arc surfacing process of nickel-based self-melting alloy[J]. Welding Technology, 2019, 40(8): 58-61. [3]方迪生, 高永光, 刘万存, 等. 双钨极镍基合金堆焊层组织与性能研究[J]. 焊接技术, 2020, 49(1): 26-29. Fang Disheng, Gao Yongguang, Liu Wancun, et al. Study on the microstructure and properties of double tungsten nickel based-alloy surfacing layer[J]. Welding Technology, 2020, 49(1): 26-29. [4]张 伟, 朵元才, 张建晓, 等. 热丝TIG堆焊Alloy59镍基合金工艺及其堆焊层性能研究[J]. 压力容器, 2020, 37(5): 13-17. Zhang Wei, Duo Yuancai, Zhang Jianxiao, et al. Research on hot-wire TIG surfacing nickel-based Alloy59 process and its surfacing properties[J]. Pressure Vessel Technology, 2020, 37(5): 13-17. [5]金 亮, 匡艳军, 邱振生, 等. 核电厂在制蒸汽发生器管板损伤缺陷修复方案研究[J]. 电焊机, 2019, 49(9): 42-48. Jin Liang, Kuang Yanjun, Qiu Zhensheng, et al. Research on the repair schemes of the damaged tube-sheet on a fabricating steam generator of a nuclear power plant[J]. Electric Welding Machine, 2019, 49(9): 42-48. [6]薛茂权. 含石墨镍铬基合金的高温氧化行为[J]. 腐蚀与防护, 2007, 28(10): 515-518. Xue Maoquan. Oxidation behaviors of Ni-Cr-based super alloy at high temperatures[J]. Corrosion and Protection, 2007, 28(10): 515-518. [7]汪 彬, 于强秀, 朱彦明, 等. 镍基625 复合管组对错边修复工艺研究[J]. 焊接技术, 2020, 49(6): 66-68. Wang Bin, Yu Qiangxiu, Zhu Yanming, et al. Study on repairing technology of wrong side of nickel base 625 composite pipe[J]. Welding Technology, 2020, 49(6): 66-68. [8]周弋琳, 夏胜登, 包 孔, 等. 自航式绞吸挖泥船耳轴堆焊工艺性能试验[J]. 造船技术, 2019(4): 57-60. Zhou Yilin, Xia Shengdeng, Bao Kong, et al. Surfacing performance test on trunnion of self-propelled cutter-suction dredge[J]. Marine Technology, 2019(4): 57-60. [9]冯 勋, 杨云丽. AP1000汽水分离再热器中一、二级再热器管板的镍基合金堆焊[J]. 金属加工(热加工), 2020(1): 34-36. [10]武英海, 高兰云, 王家开, 等. Cr-Mo钢堆焊镍基合金工艺评定及应用[C]//核能行业焊接技术经验交流会论文集. 2019: 56-59. Wu Yinghai, Gao Lanyun, Wang Jiakai, et al. Process evaluation and application of nickel base alloy surfacing for Cr-Mo steel[C]//Symposium on Welding Technology and Experience Exchange in Nuclear Energy Industry. 2019: 56-59. [11]张兆林. ENiCrMo-3等级镍基合金单层带极电渣堆焊工艺研究[J]. 电焊机, 2020, 50(5): 67-72. Zhang Zhaolin. Research on welding procedure of single-layer electroslag surfacing with band-electrode for ENiCrMo-3 grade nickel-base alloy[J]. Electric Welding Machine, 2020, 50(5): 67-72. [12]Kimura M, Fuji A, Konnoc Y, et al. Investigation of fracture for friction welded joint between pure nickel and pure aluminium with post-weld heat treatment[J]. Materials and Design, 2014, 57: 503-509. [13]Mousavi S, Sartangi P F. Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium-stainless steel composite[J]. Materials Science and Engineering A, 2008, 494(1/2): 329-336. [14]陆传航. 镍基合金复合管焊后热处理工艺[J]. 焊接技术, 2020, 49(1): 51-55. Lu Chuanhang. PWHT welding procedure for nickel alloy cladding pipe[J]. Welding Technology, 2020, 49(1): 51-55. [15]郭龙龙. 脉冲TIG堆焊Inconel 625工艺及堆焊组织性能研究[D]. 成都: 西南石油大学, 2017. Guo Longlong. Study on process, microstructure and performance of Inconel 625 cladding layer deposited using pulsed TIG[D]. Chengdu: Southwest Petroleum University, 2017. [16]卿 颖. 焊接工艺对Inconel 625/Q235B堆焊层组织性能的影响[D]. 成都: 西南石油大学, 2015. Qing Ying. Effect of welding technology on microstructure and properties of Inconel 625/Q235B surfacing layer[D]. Chengdu: Southwest Petroleum University, 2015. |