[1]王 萍, 沈千成, 吴旭明, 等. 加热气氛对GCr15轴承钢氧化和脱碳特性的影响[J]. 热加工工艺, 2018, 47(22): 78-81, 84. Wang Ping, Shen Qiancheng, Wu Xuming, et al. Effect of heating atmosphere on oxidation and decarburization properties of GCr15 bearing steel[J]. Hot Working Technology, 2018, 47(22): 78-81, 84. [2]李建国. 成分设计与热处理对轴承钢组织与性能的影响[J]. 铸造技术, 2018, 39(11): 175-178. Li Jianguo. Effect of composition design and heat treatment on microstructure & mechanical properties of bearing steel[J]. Foundry Technology, 2018, 39(11): 175-178. [3]马 超, 罗海文. GCr15轴承钢热处理过程中碳化物的析出与演变行为[J]. 材料工程, 2017, 45(6): 97-103. Ma Chao, Luo Haiwen. Precipitation and evolution behavior of carbide during heat treatments of GCr15 bearing steel[J]. Journal of Materials Engineering, 2017, 45(6): 97-103. [4]覃羡烘. 回火温度对GCr15机械轴承钢组织和力学性能的影响[J]. 热加工工艺, 2021, 50(6): 120-122. Qin Xianhong. Effects of tempering temperature on microstructure and mechanical properties of GCr15 mechanical bearing steel[J]. Hot Working Technology, 2021, 50(6): 120-122. [5]任 佳, 高 勋. 飞秒细丝-纳秒激光诱导击穿光谱技术对土壤重金属Pb元素检测[J]. 光学精密工程, 2019, 27(5): 1069-1074. Ren Jia, Gao Xun. Detection of heavy metal Pb in soil by filament-nanosecond laser induced breakdown spectroscopy[J]. Optics and Precision Engineering, 2019, 27(5): 1069-1074. [6]杨金伟, 孔令华, 付洪波, 等. 激光诱导击穿光谱表征3D打印18Ni300模具钢表面硬度[J]. 激光与红外, 2020, 50(6): 668-674. Yang Jinwei, Kong Linghua, Fu Hongbo, et al. Laser-induced breakdown spectroscopy characterizations of surface hardness of 3D printed 18Ni300 die steel[J]. Laser and Infrared, 2020, 50(6): 668-674. [7]李云红, 文 达, 李弘昊, 等. 煤样高度对激光测量煤灰分准确度影响的研究[J]. 激光与红外, 2020, 50(5): 551-556. Li Yunhong, Wen Da, Li Honghao, et al. Study on the influence of coal sample height on the accuracy of laser measurement of coal ash content[J]. Laser and Infrared, 2020, 50(5): 551-556. [8]张 蕊, 孙兰香, 陈 彤, 等. 基于激光诱导击穿光谱技术的岩石表面指纹图谱分析及分类方法[J]. 地质学报, 2020, 94(3): 991-998. Zhang Rui, Sun Lanxiang, Chen Tong, et al. Fingerprint analysis and classification of rock surface based on laser-induced breakdown spectroscopy[J]. Acta Geologica Sinica, 2020, 94(3): 991-998. [9]Shu R, Qi H, Lv G, et al. Laser-induced breakdown spectroscopy based detection of lunar soil simulants for moon exploration[J]. Chinese Optics Letters, 2007, 5(1): 58-59. [10]刘宪云, 王振亚, 郝立庆, 等. 激光诱导击穿光谱在生物医学中的应用[J]. 激光技术, 2008, 32(2): 134-136. Liu Xianyun, Wang Zhenya, Hao Liqing, et al. Application of laser induced breakdown spectroscopy technology in biomedicine field[J]. Laser Technology, 2008, 32(2): 134-136. [11]李晨毓, 曲 亮, 高 飞, 等. 激光诱导击穿光谱对金属陶瓷文物成分的表面及深度分布分析[J]. 中国光学, 2020, 13(6): 1239-1248. LI Chenyu, Qu Liang, Gao Fei, et al. Composition analysis of the surface and depth distribution of metal and ceramic cultural relics by laser-induced breakdown spectroscopy[J]. Chinese Optics, 2020, 13(6): 1239-1248. [12]Rauschenbach I, Lazic V, Pavlov S G, et al. Laser induced breakdown spectroscopy on soils and rocks: Influence of the sample temperature, moisture and roughness[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(10): 1205-1215. [13]Tsuyuki K, Miura S, Idris N, et al. Measurement of concrete strength using the emission intensity ratio between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd: YAG laser-induced plasma[J]. Applied Spectroscopy, 2006, 60(1): 61-64. [14]Aberkane S M, Bendib A, Yahiaoui K, et al. Correlation between Fe-V-C alloys surface hardness and plasma temperature via LIBS technique[J]. Applied Surface Science, 2014, 301(19): 225-229. [15]Huang J, Dong M, Lu S, et al. Estimation of the mechanical properties of steel via LIBS combined with canonical correlationanalysis(CCA) and support vector regression(SVR)[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(5): 720-729. [16]Elfaham M M, Alnozahy A M, Ashmawy A. Comparative study of LIBS and mechanically evaluated hardness of graphite/rubber composites[J]. Materials Chemistry and Physics, 2018, 207: 30-35. [17]陈 凭, 王希林, 周伟才, 等. 硅橡胶表面硬度的激光诱导击穿光谱分析[J]. 电网技术, 2019, 43(4): 1315-1321. Chen Ping, Wang Xilin, Zhou Weicai, et al. Measurement of surface hardness of silicone rubber via laser-induced breakdown spectroscopy[J]. Power System Technology, 2019, 43(4): 1315-1321. [18]Momcilovic M, Petrovic J, Ciganovic J, et al. Laser-induced plasma as a method for the metallic materials hardness estimation: An alternative approach[J]. Plasma Chemistry and Plasma Processing, 2020, 40(2): 499-510. [19]Li J, Lu J, Dai Y, et al. Correlation between aging grade of T91 steel and spectral characteristics of the laser-induced plasma[J]. Applied Surface Science, 2015, 346: 302-310. [20]薛博文, 崔敏超, 汪晨旭, 等. 基于激光技术区分不同金相组织的研究[J]. 激光技术, 2018, 42(6): 806-810. Xue Bowen, Cui Minchao, Wang Chenxu, et al. Distinguishing different metallographic structures based on laser technology[J]. Laser Technology, 2018, 42(6): 806-810. [21]Stavropoulos P, Palagas C, Angelopoulos G N, et al. Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59(12): 1885-1892. [22]Aragón C, Aguilera J A. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments andmethods[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(9): 893-916. [23]NIST atomic spectra database linesdata[DB/OL]. https: //physics. nist. gov/PhysRefData/ASD/lines_form. html [24]Milan M, Laserna J J. Diagnostics of silicon plasmas produced by visible nanosecond laser ablation[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(3): 275-288. [25]Wu R, Li Y, Zhu S G, et al. Emission spectroscopy diagnostics of plasma electron temperature[J]. Spectroscopy and Spectral Analysis, 2008, 28(4): 731-735. [26]Konjević N, Wiese W L. Experimental stark widths and shifts for spectral lines of neutral and ionized atoms[J]. Journal of Physical and Chemical Reference Data, 1990, 19(6): 1307-1385. [27]李俊彦, 陆继东, 李 军, 等. 不同硬度受热面材料的激光诱导等离子体光谱特性分析[J]. 中国激光, 2011, 38(8): 0815002. Li Junyan, Lu Jidong, Li Jun, et al. Laser-induced plasma spectra of heating surface materials with different hardnesses[J]. Chinese Journal of Lasers, 2011, 38(8): 0815002. |