[1]沃 华, 蔡学章, 李成刚. TA5板材织构对其力学性能各向异性的影响[J]. 稀有金属, 1989, 13(1): 37-42. [2]夏申琳, 王 刚, 杨 晓, 等. 钛及钛合金在船舶中的应用[J]. 金属加工(冷加工), 2016(19): 40-41. [3]Yu W X, Lü Y F, Li S K, et al. Mechanism of the anisotropy of yield ratio in TA5 titanium alloy plates[J]. Materials Science & Engineering A, 2015, 639: 314-319. [4]Chun Y B, Yu S H, Semiatin S L, et al. Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium[J]. Materials Science and Engineering A, 2005, 398: 209-219. [5]Won W J, Park C H, Hong S G, et al. Deformation anisotropy and associated mechanisms in rolling textured high purity titanium[J]. Journal of Alloys and Compounds, 2015, 651: 245-254. [6]Wang Y, He W J, Liu N, et al. Effect of pre-annealing deformation on the recrystallized texture and grain boundary misorientation in commercial pure titanium[J]. Materials Characterization, 2018, 136: 1-11. [7]Ghosh A, Singh A, Gurao N P. Effect of rolling mode and annealing temperature on microstructure and texture of commercially pure-titanium[J]. Materials Characterization, 2017, 125: 83-93. [8]Williams J C, Baggerly R G, Paton N E. Deformation behavior of HCP Ti-Al alloy single crystals[J]. Metallurgical and Materials Transactions A, 2002, 33(13): 837-850. [9]郝晓博, 张 强, 陶会发, 等. 轧制工艺对TA5钛合金薄板组织与性能的影响[J]. 热加工工艺, 2019, 48(19): 119-120, 123. Hao Xiaobo, Zhang Qiang, Tao Huifa, et al. Effects of rolling process on microstructure and properties of TA5 titanium alloy sheet[J]. Hot Working Technology, 2019, 48(19): 119-120, 123. [10]王树军. 热处理工艺对TA5钛合金组织和性能的影响[C]//2012船舶材料与工程应用学术会议论文集. 中国造船工程学会, 2012: 61-64. [11]Fitzner A, Prakash D G L, Fonseca J Q, et al. The effect of aluminium on twinning in binary alpha-titanium[J]. Acta Materialia, 2016, 103: 341-351. [12]Bishoyi B D, Sabat R K, Sahoo S K. Effect of temperature on microstructure and texture evolutions during uniaxial compression of commercially pure titanium[J]. Materials Science and Engineering A, 2018, 718: 398-411. [13]Dyakonov G S, Mironov S, Semenova I P, et al. EBSD analysis of grain-refinement mechanisms operating during equal-channel angular pressing of commercial-purity titanium[J]. Acta Materialia, 2019, 173: 174-183. [14]Rollett Anthony, Gregory S Rohrer, Humphreys John. Recrystallization and Related Annealing Phenomena[M]. Third Edition. Oxford: Pergamon, 2017. [15]Chun Y B, Hwang S K. Static recrystallization of warm-rolled pure Ti influenced by microstructural inhomogeneity[J]. Acta Materialia, 2008, 56: 369-379. [16]Choi S W, Li C L, Won J W, et al. Deformation heterogeneity and its effect on recrystallization behavior in commercially pure titanium: Comparative study on initial microstructures[J]. Materials Science and Engineering A, 2019, 764: 138211. [17]Fizanne-Michel C, Cornen M, Castany P, et al. Determination of hardness and elastic modulus inverse pole figures of a polycrystalline commercially pure titanium by coupling nanoindentation and EBSD techniques[J]. Materials Science and Engineering A, 2014, 613: 159-162. [18]Britton T B. The effect of crystal orientation on the indentation response of commercially pure titanium: Experiments and simulations[J]. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 2010, 466: 695-719. [19]Viswanathan G B, Lee E, Maher D M, et al. Direct observations and analyses of dislocation substructures in the α phase of an α/β Ti-alloy formed by nanoindentation[J]. Acta Materialia, 2005, 53: 5101-5115. [20]Chun Y B, Semiatin S L, Hwang S K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium[J]. Acta Materialia, 2006, 54: 3673-3689. |