[1]Javaherdashti R. How corrosion affects industry and life[J]. Anti-Corrosion Methods and Materials, 2000, 47(1): 30-34. [2]De L F D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel[J]. Corrosion Science, 2011, 53: 604-617. [3]Townsend H E. Effects of alloying elements on the corrosion of steel in industrial atmospheres[J]. Corrosion, 2001, 57(6): 499-501. [4]陈新华. 合金元素对经济耐候钢大气腐蚀协同抑制作用[D]. 沈阳: 中科院金属研究所, 2007. Chen Xinhua. Synergistic effect of alloying elements on the resistance to atmospheric corrosion of cost effective weathering steel[D]. Shenyang: Institute of Metal Research Chinese Academy of Sciences, 2007. [5]松岛岩. 低合金耐蚀钢—开发、发展及研究[M]. 靳裕康, 译. 北京: 冶金工业出版社, 2004: 12. [6]Montoya P, Díaz I, Granizo N, et al. A study on accelerated corrosion testing of weathering steel[J]. Materials Chemistry and Physics, 2013, 142: 220-228. [7]苏冠桥. 海洋平台用高强韧中锰钢组织性能控制及腐蚀行为研究[D]. 沈阳: 东北大学, 2015. Su Guanqiao. Study on the regulation of microstructure & mechanical properties and corrosion behavior of medium manganese steel with high strength and high toughness for offshore platform at seawater environment[D]. Shenyang: Northeastern University, 2015. [8]Li Z C, Misra R D K, Cai Z H, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect[J]. Materials Science and Engineering A, 2016, 673: 63-72. [9]Xu Y B, Zou Y, Hu Z P, et al. Correlation between deformation behavior and austenite characteristics in a Mn-Al type TRIP steel[J]. Materials Science and Engineering A, 2017, 698: 126-135. [10]董俊华, 艾美蓉, 韩恩厚, 等. Mn-Cu耐候钢锈层结构与性能关系研究[C]//中国腐蚀与防护学会第十一届耐蚀金属材料学术年会论文集. 2008: 113-115. [11]Qin D Y, Gao X H, Liu T, et al. Effect of annealing process on microstructure and mechanical properties in microalloyed medium manganese steel[J]. Steel Research International, 2021, 92(4): 2000517. [12]王 昌, 徐海峰, 黄崇湘, 等. 中锰钢逆相变退火组织的演变及锰的配分行为[J]. 钢铁研究学报, 2016, 28(4): 38-46. Wang Chang, Xu Haifeng, Huang Chongxiang, et al. Evolution of ART-annealed microstructure and partition behavior of manganese in medium mangenese steel[J]. Journal of Iron and Steel Research, 2016, 28(4): 38-46. [13]朱瑞富, 朝志强, 魏 涛, 等. 奥氏体中锰钢加工硬化的微观机制[J]. 钢铁研究学报, 1997, 9(1): 30-33. Zhu Ruifu, Chao Zhiqiang, Wei Tao, et al. Microscopic mechanism of work hardening of austenitic medium manganese steel[J]. Journal of Iron and Steel Research, 1997, 9(1): 30-33. [14]沈国慧. 新型超高强韧中锰钢组织、力学性能及防弹性研究[D]. 北京: 北京科技大学, 2021. Shen Guohui. Studies on microstructure, mechanical properties and ballistic performance of novel medium-Mn steel possessing ultrahigh strength and high toughness[D]. Beijing: University of Science and Technology Beijing, 2021. [15]邵成伟. 高强塑积含铝中锰钢组织调控及氢脆敏感性研究[D]. 北京: 北京交通大学, 2018. Shao Chengwei. Study on microstructure control and hydrogen embrittlement susceptibility of Al-Containing medium Mn steels with high product of strength to ductility[D]. Beijing: Beijing Jiaotong University, 2018. [16]吝章国, 唐 荻, 江海涛, 等. 淬火温度对中锰Q&P钢组织与性能的影响[J]. 金属热处理, 2016, 41(10): 123-127. Lin Zhangguo, Tang Di, Jiang Haitao, et al. Effect of quenching temperature on microstructure and properties of medium-manganese Q&P steel[J]. Heat Treatment of Metals, 2016, 41(10): 123-127. [17]Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content[J]. Acta Materialia, 2015, 84: 229-236. [18]Cai Z H, Ding H, Xue X, et al. Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength-high ductility combination transformation-induced plasticity steel[J]. Scripta Materialia, 2013, 68(11): 865-868. [19]Sun C, Liu S L, Misra R D K, et al. Influence of intercritical tempering temperature on impact toughness of a quenched and tempered medium-Mn steel: Intercritical tempering versus traditional tempering[J]. Materials Science and Engineering A, 2018, 711: 484-491. [20]田亚强, 黎 旺, 郑小平, 等. 两相区形变对中锰钢逆相奥氏体稳定性及其断裂性能的影响[J]. 金属热处理, 2019, 44(5): 43-48. Tian Yaqiang, Li Wang, Zheng Xiaoping, et al. Effect of intercritical deformation on reversed austenite stability of medium manganese steel and its fracture properties[J]. Heat Treatment of Metals, 2019, 44(5): 43-48. [21]蔡志辉. 高强塑性中锰钢的组织演变及力学性能的研究[D]. 沈阳: 东北大学, 2014. Cai Zhihui. Study on microstructural evolution and mechanical properties of medium manganese steels with superior strength and ductility[D]. Shenyang: Northeastern University, 2014. [22]邹 英. 超低碳中锰钢板的组织性能调控及强韧化机理[D]. 沈阳: 东北大学, 2019. Zou Ying. Microstructure-properties regulation and strengthening-toughening mechanism of ultra-low carbon medium manganese steel plate[D]. Shenyang: Northeastern University, 2019. [23]沈鑫珺. 轧制与水冷耦合的控制轧制技术研究[D]. 沈阳: 东北大学, 2017. Shen Xinjun. Study of rolling and water-cooling coupled control rolling process[D]. Shenyang: Northeastern University, 2017. |