[1]董企铭, 李 炎, 江锡堂, 等. 20Cr2Ni4A钢混晶机理的初步研究[J]. 河南科技大学学报(自然科学版), 1987(2): 4-13. Dong Qiming, Li Yan, Jiang Xitang, et al. Preliminary research on mixed grain mechanism of 20Cr2Ni4A steel[J]. Journal of Henan University of Science and Technology (Natural Science), 1987(2): 4-13. [2]顾亚桃, 杨明华, 陈 强. 20Cr2Ni4A钢奥氏体晶粒长大规律与高温渗碳工艺[J]. 金属热处理, 2019, 44(2): 205-210. Gu Yatao, Yang Minghua, Chen Qiang. Austenitic grain growth law and high temperature carburizing process of 20Cr2Ni4A steel[J]. Heat Treatment of Metals, 2019, 44(2): 205-210. [3]毛卫民. 金属的再结晶与晶粒长大[M]. 北京: 冶金工业出版社, 1994. [4]Beck P A, Kremer J C, Demer L. Grain growth in high purity aluminum[J]. Physical Review, 1947, 71(8): 555. [5]Stasko R, Adrian H, Adrian A. Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel[J]. Materials Characterization, 2006, 56(4/5): 340-347. [6]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979, 13(3/4): 187-194. [7]廖林镇, 杨庚蔚, 戴成珂, 等. 30CrMo钢的奥氏体晶粒长大行为及数学模型[J]. 上海金属, 2016, 38(6): 16-19, 26. Liao Linzhen, Yang Gengwei, Dai Chengke, et al. Austenite grain growth behavior and mathematical model of 30CrMo steel[J]. Shanghai Metals, 2016, 38(6): 16-19, 26. [8]董 芳. 锻造及预备热处理工艺对18Cr2Ni4WA锻件本质晶粒度的影响[J]. 金属加工, 2017(11): 61-64. [9]张 浩. 亚温淬火40CrNi2Mo钢低温性能研究[D]. 沈阳: 沈阳理工大学, 2011. Zhang Hao. Study on the low temperature properties of subcritically quenched 40CrNi2Mo steel[D]. Shenyang: Shenyang Ligong University, 2011. [10]刘 豪, 张立文, 李 飞, 等. 38CrMoAl钢的奥氏体晶粒长大行为[J]. 金属热处理, 2020, 45(8): 38-42. Liu Hao, Zhang Liwen, Li Fei, et al. Austenite grain growth behavior of 38CrMoAl steel[J]. Heat Treatment of Metals, 2020, 45(8): 38-42. [11]徐文帅, 王春旭, 厉 勇, 等. 40CrNi2MoE钢奥氏体晶粒长大的数学模型[J]. 材料热处理学报, 2014, 35(8): 232-238. Xu Wenshuai, Wang Chunxu, Li Yong, et al. Mathematical models of austenite grain growth in 40CrNi2MoE steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(8): 232-238. [12]任承灼. 锻造温度对40CrNiMoA钢奥氏体本质晶粒度的影响[J]. 航空材料学报, 1984(2): 18-22. |