[1]胡正飞, 吴杏芳, 王春旭. 二次硬化高CoNi超高强度合金钢的研究近况[J]. 钢铁研究学报, 2001, 13(4): 62-68. Hu Zhengfei, Wu Xingfang, Wang Chunxu. Recent status of enriched CoNi ultra-high strength steel with secondary hardening[J]. Journal of Iron and Steel Research, 2001, 13(4): 62-68. [2]Gao Y H, Liu S Z, Hu X B, et al. A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness[J]. Materials Science and Engineering A, 2019, 759: 298-302. [3]厉 勇, 王春旭, 黄顺喆, 等. 超高强度钢中M2C和β-NiAl相的复合析出强化行为[J]. 金属热处理, 2018, 43(6): 50-54. Li Yong, Wang Chunxu, Huang Shunzhe, et al. Combined precipitation strengthening behavior of M2C carbides and β-NiAl intermetallics in ultrahigh strength steel[J]. Heat Treatment of Metals, 2018, 43(6): 50-54. [4]Perrut M, Mathon M H, Delagnes D. Small-angle neutron scattering of multiphase secondary hardening steels[J]. Journal of Materials Science, 2012, 47(4): 1920-1929. [5]梁 锋. 夹杂物对超高强度钢微观破坏机制的研究[D]. 北京: 清华大学, 2006. [6]刘 路, 詹肇麟, 韩 顺, 等. 回火温度对GE1014钢组织与力学性能的影响[J]. 金属热处理, 2018, 43(10): 133-137. Liu Lu, Zhan Zhaolin, Han Shun, et al. Effect of tempering temperature on microstructure and mechanical properties of GE1014 steel[J]. Heat Treatment of Metals, 2018, 43(10): 133-137. [7]Delagnes D, Pettinari-Sturmel F, Mathon M H, et al. Cementite-free martensitic steels: A new route to develop high strength/high toughness grades by modifying the conventional precipitation sequence during tempering[J]. Acta Materialia, 2012, 60(16): 5877-5888. [8]Wang C X, Gao Y H, Li Y, et al. Effects of solid-solution temperature on microstructure and mechanical properties of a novel 2000 MPa grade ultra-high strength steel[J]. Journal of Iron and Steel Research International, 2020, 27(6): 710-718. [9]梁晓东, 王晨充, 李 亮, 等. 淬火温度对C61齿轮钢显微组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(11): 79-86. Liang Xiaodong, Wang Chenchong, Li Liang, et al. Effect of quenching temperature on microstructure and mechanical properties of C61 gear steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(11): 79-86. [10]胡成飞, 吴 润, 尉文超, 等. 淬火温度对17Cr2Ni2MoVNb重载齿轮钢组织和硬度的影响[J]. 金属热处理, 2019, 44(10): 91-95. Hu Chengfei, Wu Run, Yu Wenchao, et al. Effect of quenching temperature on microstructure and hardness of 17Cr2Ni2MoVNb heavy gear steel[J]. Heat Treatment of Metals, 2019, 44(10): 91-95. [11]崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2009. [12]谭玉华, 马跃新. 马氏体新形态学[M]. 北京: 冶金工业出版社, 2013. [13]李继康, 李昭东. 超低碳马氏体的EBSD结构表征[J]. 电子显微学报, 2011, 30(S1): 394-398.Li Jikang, Li Zhaodong. EBSD characterization on the structure of ultra-low carbon martensite[J]. Journal of Chinese Electron Microscopy Society, 2011, 30(S1): 394-398. [14]张晓东, 夏佃秀, 王守仁, 等. 奥氏体化温度对51CrV4钢淬火组织和性能的影响[J]. 钢铁, 2019, 54(3): 76-81, 95. Zhang Xiaodong, Xia Dianxiu, Wang Shouren, et al. Effect of austenitizing temperature on quenching microstructure and properties of 51CrV4 steel[J]. Iron and Steel, 2019, 54(3): 76-81, 95. [15]钢铁研究总院. 钢和铁、镍基合金的物理化学相分析[M]. 上海: 上海科学技术出版社, 1981. [16]Wang C, Wang M, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scripta Materialia, 2008, 58(6): 492-495. [17]张鹏杰, 王春旭, 厉 勇, 等. 淬火温度对2200 MPa级超高强度钢力学性能与微观组织的影响[J]. 金属热处理, 2021, 46(1): 70-74. Zhang Pengjie, Wang Chunxu, Li Yong, et al. Effect of quenching temperature on mechanical properties and microstructure of 2200 MPa ultra high strength steel[J]. Heat Treatment of Metals, 2021, 46(1): 70-74. [18]Liu T Q, Cao Z X, Wang H, et al. A new 2.4 GPa extra-high strength steel with good ductility and high toughness designed by synergistic strengthening of nano-particles and high-density dislocations[J]. Scripta Materialia, 2020, 178: 285-289. [19]王春芳. 低合金马氏体钢强韧性组织控制单元的研究[D]. 北京: 钢铁研究总院, 2008. [20]惠卫军, 董 瀚, 王毛球, 等. 淬火温度对Cr-Mo-V系低合金高强度钢力学性能的影响[J]. 金属热处理, 2002, 27(3): 14-16. Hui Weijun, Dong Han, Wang Maoqiu, et al. Effect of quenching temperature on mechanical properties of Cr-Mo-V series low alloy high strength steel[J]. Heat Treatment of Metals, 2002, 27(3): 14-16. |