[1]Viswanathan R, Henry J F, Tanzosh J, et al. US program on materials technology for ultra-supercritical coal power plants[J]. Journal of Materials Engineering and Performance, 2005, 14 (3): 281-292. [2]Al-Hatab K A, Al-Bukhaiti M A, Krupp U. Cyclic oxidation kinetics and oxide scale morphologies developed on alloy 617[J]. Applied Surface Science, 2014, 318: 275-279. [3]Yvon P, Carré F. Structural materials challenges for advanced reactor systems[J]. Journal of Nuclear Materials, 2009, 385(2): 217-222. [4]Kim W G, Park J Y, Ekaputra I M W, et al. Analysis of creep behavior of alloy 617 for use of VHTR system[J]. Procedia Material Science, 2014, 3(1): 1285-1290. [5]Grierson D S, Cao G, Brooks P, et al. Creep crack growth behavior of alloys 617 and 800H in air and impure helium environments at high temperatures[J]. Metallurgical and Materials Transactions E, 2017, 4(1): 1-9. [6]Grierson D, Cao G, Glaudell A, et al. Creep crack growth in high-temperature impure helium environments[A]//Fracture, Fatigue, Failure, and Damage Evolution, Volume 5[M]. Springer International Publishing, 2015. [7]Quayyum S, Sengupta M, Choi G, et al. High temperature multiaxial creep-fatigue and creep-ratcheting behavior of alloy 617[J]. Springer International Publishing, 2014, 302: 25-43. [8]Tahir F, Dahire S, Liu Y. Image-based creep-fatigue damage mechanism investigation of alloy 617 at 950 ℃[J]. Materials Science and Engineering, 2017, 424: 35-42. [9]Han Y, Yan S, Yin B G, et al. Effects of temperature and strain rate on the dynamic recrystallization of a medium-high-carbonhigh-silicon bainitic steel during hot deformation[J]. Vacuum, 2018, 148: 78-87. [10]Nnaemeka E U, Matt K, Olanrewaju A O. Analysis and constitutive modeling of high strain rate deformation behavior of Haynes 282 aerospace superalloy[J]. Materials Today Communications, 2019, 20: 100545. [11]Yanushkevich Z, Belyakov A, Kaibyshev R. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273 K[J]. Acta Materialia, 2015, 82: 244-254. [12]高 佩. 超高温气冷堆中间换热器用Inconel 617B合金传热管的组织及性能[J]. 金属热处理, 2019, 44(5): 42-46. Gao Pei. Microstructure and properties of Inconel 617B alloy heat transfer tube for intermediate heat exchanger of ultrahigh temperature gas-cooled reactor[J]. Heat Treatment of Metals, 2019, 44(5): 42-46. [13]罗 锐, 陈乐利, 程晓农, 等. 高温合金Inconel 617B的热变形及动态再结晶行为[J]. 压力容器, 2020, 37(10): 7-14. Luo Rui, Chen Leli, Cheng Xiaonong, et al. Thermal deformation and dynamic recrystallization behavior of Inconel 617B superalloy[J]. Editorial Office of Pressure Vessel Technology, 2020, 37(10): 7-14. [14]Yeh T K, Chang H P, Wang M Y, et al. Corrosion of alloy 617 in high-temperature gas environments[J]. Nuclear Engineering & Design, 2014, 271: 257-261. [15]Lee G G, Jung S, Kim D, et al. Microstructural investigation of alloy 617 corroded in high-temperature helium environment[J]. Nuclear Engineering and Design, 2014, 271: 301-308. [16]Wei H L, Liu G Q, Xiao X, et al. Dynamicrecrystalli-zation behavior of a medium carbon vanadium micro-alloyed steel[J]. Materials Science and Engineering: A, 2013, 573: 215-221. [17]高 佩, 程晓农, 罗 锐. 热处理对N06230合金无缝管组织及抗拉强度的影响[J]. 钢铁, 2019, 54(12): 89-95. Gao Pei, Cheng Xiaonong, Luo Rui. Effects of heat treatment on microstructure and tensile strength of N06230 alloy seamless tube[J]. Iron and Steel, 2019, 54(12): 89-95. [18]刘岩岩, 朱丽慧, 周任远, 等. Inconel 617B 合金焊接接头 750 ℃持久微观组织演变对性能的影响[J]. 金属热处理, 2017, 42 (5): 62-67. Liu Yanyan, Zhu Lihui, Zhou Renyuan, et al. Effect of microstructure evolution on properties of Inconel 617B alloy welded joint creep tested at 750 ℃[J]. Heat Treatment of Metals, 2017, 42(5): 62-67. [19]Klower J, Husemann R U, Bader M. Development of nickel alloys based on alloy 617 for components in 700 ℃ power plants[J]. Procedia Engineering, 2013, 55: 226-231. [20]毛卫民. 金属的再结晶与晶粒长大[M]. 北京: 冶金工业出版社, 1994. [21]余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2013. |