[1]赵玉涛, 戴起勋, 陈 刚. 金属基复合材料[M]. 北京: 机械工业出版社, 2007. [2]Bartkowski D, Kinal G. Microstructure and wear resistance of Stellite-6/WC MMC coatings produced by laser cladding using Yb: YAG disk laser[J]. International Journal of Refractory Metals and Hard Materials, 2016, 58: 157-164. [3]Man H C, Yang Y Q, Lee W B. Laser induced reaction synthesis of TiC+WC reinforced metal matrix composites coatings on Al 6061[J]. Surface & Coatings Technology, 2003, 185(1): 74-80. [4]江少群, 王 刚, 陈超文. WC增强Fe基合金熔覆层的组织与湿砂磨损特性[J]. 中国表面工程, 2015, 28(1): 36-41. Jiang Shaoqun, Wang Gang, Chen Chaowen. Microstructure and wet sand abrasion resistance of Fe-based alloy clad coatings reinforced with WC[J]. China Surface Engineering, 2015, 28(1): 36-41. [5]Gu D D, Hagedorn Y, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60: 3849-3860. [6]王淑峰, 李惠琪, 迟 静, 等. 等离子原位冶金复合碳化钨合金组织特性与结晶机理研究[J]. 材料工程, 2011(8): 72-76. Wang Shufeng, Li Huiqi, Chi Jing, et al. Microstructure and crystallization mechanism of composite WC alloy produced by plasma in-situ metallurgy[J]. Journal of Materials Engineering, 2011(8): 72-76. [7]陈莹莹, 李文戈, 吴培桂. 激光熔覆原位合成碳化钨增强铁基表面复合材料的研究[J]. 金属热处理, 2011, 36(3): 64-67. Chen Yingying, Li Wenge, Wu Peigui. In situ synthesis tungsten carbide reinforced ferrous matrix surface composites by laser cladding[J]. Heat Treatment of Metals, 2011, 36(3): 64-67. [8]朱继祥, 雷 声, 李 帅, 等. WC含量对铁基复合涂层组织与磨损性能的研究[J]. 南京师大学报(自然科学版), 2021, 44(1): 28-34. Zhu Jixiang, Lei Sheng, Li Shuai, et al. Research on the microstructure and wear properties of iron-based composite coating with WC[J]. Journal of Nanjing Normal University (Natural Science Edition), 2021, 44(1): 28-34. [9]Lu J Z, Cao J, Lu H F, et al. Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding[J]. Surface & Coatings Technology, 2019, 369: 228-237. [10]Kooi B J, Pei Y T, Hosson J T M D. The evolution of microstructure in a laser clad TiB-Ti composite coating[J]. Acta Materialia, 2003, 51: 831-845. [11]Leunda J, Sanz C, Soriano C. Laser cladding strategies for producing WC reinforced NiCr coatings inside twin barrels[J]. Surface & Coatings Technology, 2016, 307: 720-727. [12]Xu J S, Zhang X C, Xuan F Z, et al. Rolling contact fatigue behavior of laser cladded WC/Ni composite coating[J]. Surface & Coatings Technology, 2014, 239: 7-15. [13]Gu D D, Jia Q B. Novel crystal growth of in situ WC in selective laser-melted W-C-Ni ternary system[J]. Journal of the American Ceramic Society, 2014, 97: 684-687. [14]Deschuyteneer D, Petit F, Gonon M, et al. Influence of large particle size-up to 1.2 mm-and morphology on wear resistance in NiCrBSi/WC laser cladded composite coatings[J]. Surface & Coatings Technology, 2016, 311: 365-373. [15]Yuan Y L, Li Z G. Growth mechanism of in-situ WC grain in Fe-Ni-W-C alloys system[J]. Journal of Alloys and Compounds, 2018, 738: 379-383. [16]Gu D D, Meiners W. Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hard metals prepared by selective laser melting[J]. Materials Science & Engineering A, 2010, 527(29): 7585-7592. [17]田乃良, 杜荣建, 周昌炽. 激光熔覆添加碳化钨的镍基合金应力状况研究[J]. 中国激光, 2004(4): 505-508. Tian Nailiang, Du Rongjian, Zhou Changzhi. Study on stress status of WC doped Ni-based alloy by laser cladding[J]. Chinese Journal of Lasers, 2004(4): 505-508. [18]吴 莹, 牛 焱. 激光熔覆添加碳化钨的镍基合金层的组织和硬度研究[J]. 材料保护, 2005(2): 61-63. Wu Ying, Niu Yan. Microstructure and hardness of laser cladding nickel-based alloy doped with WC on Q235 steel[J]. Materials Protection, 2005(2): 61-63. |