[1]Supriya S B, Srinivas S. Machinability studies on stainless steel by abrasive water jet-review[J]. Materials Today: Proceedings, 2018, 5(1): 2871-2876. [2]毕凤琴, 周 帮, 王 勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214. Bi Fengqin, Zhou Bang, Wang Yong. Effect of alloying on anti-corrosion performance of stainless steel: A review[J]. Materials Reports, 2019, 33(7): 1206-1214. [3]Xie Y, Zhang J. Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters: A review[J]. Journal of Nuclear Materials, 2015, 466: 85-93. [4]Ibrahim M Z, Sarhan A A D, Kuo T Y, et al. Developing a new laser cladded FeCrMoCB metallic glass layer on nickel-free stainless-steel as a potential superior wear-resistant coating for joint replacement implants[J]. Surface and Coatings Technology, 2020, 392: 125755. [5]方 毅. 不锈钢的腐蚀种类及影响因素[J]. 当代化工研究, 2016(12): 11-12. Fang Yi. Corrosion types and influence factors of stainless steel[J]. Modern Chemical Research, 2016(12): 11-12. [6]廖文和, 田 威, 曾 超, 等. 激光熔覆再制造产品热损伤与寿命评估[M]. 北京: 科学出版社, 2017: 2-7. [7]姜 波, 李金朋. 激光熔覆技术研究现状与发展[J]. 科技创新导报, 2018, 15(32): 53-54. [8]董世运, 李福泉, 闫世兴, 等. 激光增材再制造技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2019: 3-9. [9]董世运, 马运哲, 徐滨士, 等. 激光熔覆材料研究现状[J]. 材料导报, 2006(6): 5-9. Dong Shiyun, Ma Yunzhe, Xu Binshi, et al. Current status of material for laser cladding[J]. Materials Review, 2006(6): 5-9. [10]张瑞珠, 李林杰, 唐明奇, 等. 激光熔覆技术的研究进展[J]. 热处理技术与装备, 2017, 38(3): 7-11. Zhang Ruizhu, Li Linjie, Tang Mingqi, et al. Research progress of laser cladding technology[J]. Heat Treatment Technology and Equipment, 2017, 38(3): 7-11. [11]郭 岩, 叶 智, 杨文涛, 等. 含碳化钨的镍基和铁基合金激光熔覆层的组织结构与耐盐雾腐蚀性能[J]. 电镀与涂饰, 2019, 38(19): 1054-1059. Guo Yan, Ye Zhi, Yang Wentao, et al. Microstructure and salt spray corrosion resistance of laser-clad nickel-based and iron-based layers containing tungsten carbide[J]. Electroplating & Finishing, 2019, 38(19): 1054-1059. [12]平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540. Ping Xuelong, Fu Hanguang, Sun Shuting. Progress in preparation of hard phase reinforced Ni-based alloy composite coating by laser cladding[J]. Materials Review, 2019, 33(9): 1535-1540. [13]王文权, 李雅倩, 李 欣, 等. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 77-82. Wang Wenquan, Li Yaqian, Li Xin, et al. Microstructures and properties of Ni-Cr-B-Si alloy powders prepared by selective laser melting[J]. Materials Reports, 2020, 34(2): 77-82. [14]孟氢钡, 覃恩伟, 黄弋力, 等. 轴类部件表面镍基合金激光熔覆 修复层力学性能研究[J]. 电焊机, 2019, 49(11): 17-19, 25. Meng Qingbei, Qin Enwei, Hang Yili, et al. Mechanical properties of laser cladding repair layer of nickel-based alloy on shaft components[J]. Electric Welding Machine, 2019, 49(11): 17-19, 25. [15]Lei J, Shi C, Zhou S, et al. Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding[J]. Surface and Coatings Technology, 2018, 334: 274-285. [16]Zhang D, Cui X, Jin G, et al. Effect of in-situ synthesis of multilayer graphene on the microstructure and tribological performance of laser cladded Ni-based coatings[J]. Applied Surface Science, 2019, 495: 143581. [17]Shu D, Li Z, Zhang K, et al. In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding[J]. Materials Letters, 2017, 195: 178-181. [18]江国业, 李 敏, 徐 平, 等. 激光熔覆钴基合金非对称宏观形貌形成机理及微观特性研究[J]. 激光与光电子学进展, 2019, 56(8): 159-164. Jiang Guoye, Li Min, Xu Ping, et al. Asymmetric macro-morphologies formation mechanism and microscopic characteristics of Co-based alloys by laser cladding[J]. Laser & Optoelectronics Progress, 2019, 56(8): 159-164. [19]魏 莹, 魏先顺, 梁丹丹, 等. 等离子转移弧堆焊镍基和钴基合金堆焊层的组织和耐磨性能研究[J]. 热加工工艺, 2018, 47(5): 62-67. Wei Ying, Wei Xianshun, Liang Dandan, et al. Microstructure and wear resistance of Ni-based and Co-based alloy surfacing layers by plasma transferred arc[J]. Hot Working Technology, 2018, 47(5): 62-67. [20]张新元. 球墨铸铁表面激光熔覆TiC增强Co基合金组织与性能研究[D]. 沈阳: 航空航天大学, 2019. [21]邵延凡, 王泽华, 李 潇, 等. 双相不锈钢表面激光熔覆钴基合金组织和性能研究[J]. 表面技术, 2020, 49(4): 299-305. Shao Yanfan, Wang Zehua, Li Xiao, et al. Microstructure and properties of laser cladding Co-based alloys on duplex stainless steel[J]. Surface Technology, 2020, 49(4): 299-305. [22]Cheng Q, Shi H, Zhang P, et al. Microstructure, oxidation resistance and mechanical properties of stellite 12 composite coating doped with submicron TiC/B4C by laser cladding[J]. Surface and Coatings Technology, 2020, 395: 125810. [23]Liu C, Xu P, Zheng D, et al. Study on microstructure and properties of a Fe-based SMA/PZT composite coating produced by laser cladding[J]. Journal of Alloys and Compounds, 2020, 831: 154813. [24]Aladesanmi V I, Fatoba O S, Akinlabi E T. Laser cladded Ti+TiB2 on steel rail microstructural effect[J]. Procedia Manufacturing, 2019, 33: 709-716. [25]Guo Y, Li C, Zeng M, et al. In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding[J]. Materials Chemistry and Physics, 2020, 242: 122522. [26]Hu M, Tang J, Chen X, et al. Microstructure and properties of WC-12Co composite coatings prepared by laser cladding[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 1017-1030. [27]Pang X, Zhou F. Thermostability and weatherability of TiN/TiC-Ni/Mo solar absorption coating by spray method-laser cladding hybrid deposition[J]. Optics and Lasers in Engineering, 2020, 127: 105983. [28]Li X, Zhang C H, Zhang S, et al. Design, preparation, microstructure and properties of novel wear-resistant stainless steel-base composites using laser melting deposition[J]. Vacuum, 2019, 165: 139-147. [29]Hu Y, Cong W. A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites[J]. Ceramics International, 2018, 44(17): 20599-20612. [30]Xu X, Mi G, Xiong L, et al. Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire[J]. Journal of Alloys and Compounds, 2018, 740: 16-27. [31]Mohammadzadeh Asl S, Ganjali M, Karimi M. Surface modification of 316L stainless steel by laser-treated HA-PLA nanocomposite films toward enhanced biocompatibility and corrosion-resistance in vitro[J]. Surface and Coatings Technology, 2019, 363: 236-243. [32]张瑞宾, 王国富, 陈元华. 镍基合金表面电子束熔覆Co/CeO2复合涂层的耐磨性研究[J]. 热加工工艺, 2019, 48(4): 174-178. Zhang Ruibin, Wang Guofu, Chen Yuanhua. Study on wear resistance of electron beam cladding Co/CeO2 coating on Ni-base alloy surface[J]. Hot Working Technology, 2019, 48(4): 174-178. [33]高 彬, 张 勇, 李振奎, 等. 金属连接体表面Y改性NiFe2O4尖晶石涂层的制备与性能[J]. 热加工工艺, 2019, 48(2): 143-147. Gao Bin, Zhang Yong, Li Zhenkui, et al. Preparation and properties of Y modified NiFe2O4spinel coating on surface of metal interconnects[J]. Hot Working Technology, 2019, 48(2): 143-147. [34]赵运才, 刘法镇. CeO2对等离子喷涂Ti-Al/WC金属陶瓷复合涂层组织和摩擦学性能的影响[J]. 金属热处理, 2019, 44(4): 201-206. Zhao Yuncai, Liu Fazhen. Effect of CeO2 on microstructure and tribological properties of plasma sprayed Ti-Al/WC cermet composite coatings[J]. Heat Treatment of Metals, 2019, 44(4): 201-206. [35]Tian H, Wang C, Guo M, et al. Microstructure and luminescence properties of YSZ-based thermal barrier coatings modified by Eu2O3[J]. Ceramics International, 2020, 46(4): 4444-4453. [36]Hoche H, Pusch C, Oechsner M. Corrosion and wear protection of mild steel substrates by innovative PVD coatings[J]. Surface and Coatings Technology, 2020, 391: 125659. [37]陈川辉, 陈 彦, 沈剑标, 等. 铈掺杂镍基碳化钨激光熔覆层的耐磨性能[J]. 金属热处理, 2019, 44(12): 192-197. Chen Chuanhui, Chen Yan, Shen Jianbiao, et al. Wear resistance of Ce doped Ni based-WC coating prepared by laser cladding[J]. Heat Treatment of Metals, 2019, 44(12): 192-197. [38]Quazi M M, Fazal M A, Haseeb A S M A, et al. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review[J]. Journal of Rare Earths, 2016, 34(6): 549-564. [39]Weng Z, Wang A, Wu X, et al. Wear resistance of diode laser-clad Ni/WC composite coatings at different temperatures[J]. Surface and Coatings Technology, 2016, 304: 283-292. [40]Zhang Z, Yang F, Zhang H, et al. Microstructure and element distribution of laser cladding TiCx-reinforced CrTi4-based composite coating with CeO2/Ce2O3[J]. Materials Letters, 2021, 283: 128772. [41]Yeh J, Chen S, Gan J. Communication: Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metallurgical and Materials Transactions A, 2004, 35(8): 2533-2536. [42]Yeh J W, Chen S K, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004(5): 299-303. [43]Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J]. Surface and Coatings Technology, 2004, 188-189: 193-200. [44]Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Advanced Engineering Materials, 2004(1/2): 74-78. [45]梁秀兵, 魏 敏, 程江波, 等. 高熵合金新材料的研究进展[J]. 材料工程, 2009(12): 75-79. Liang Xiubing, Wei Min, Cheng Jiangbo, et al. Reaserch progress in advanced materials of high-entropy alloys[J]. Journal of Materials Engineering, 2009(12): 75-79. [46]王晓鹏, 孔凡涛. 高熵合金及其他高熵材料研究新进展[J]. 航空材料学报, 2019, 39(6): 1-19. Wang Xiaopeng, Kong Fantao. Resent development in high-entropy alloys and other high-entropy materials[J]. Journal of Aeronautical Materials, 2019, 39(6): 1-19. [47]Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys[J]. Nature, 2019, 574: 223-227. [48]Chao Q, Guo T, Jarvis T, et al. Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel[J]. Surface and Coatings Technology, 2017, 332: 440-451. [49]Zhang G J, Tian Q W, Yin K X, et al. Effect of Fe on microstructure and properties of AlCoCrFexNi (x=1.5, 2.5) high entropy alloy coatings prepared by laser cladding[J]. Intermetallics, 2020, 119: 106722. [50]Zheng H, Tan Y, Chen Z, et al. Evolution mechanism of interface cohesion for the coating inducing by laser cladding YSZ@Ni core-shell nanoparticles: Experimental and theoretical research[J]. Journal of Alloys and Compounds, 2017, 708: 844-852. [51]Gao J, Wu C, Hao Y, et al. Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding[J]. Optics and Laser Technology, 2020, 129: 106287. [52]Kovalev O B, Bedenko D V, Zaitsev A V. Development and application of laser cladding modeling technique: From coaxial powder feeding to surface deposition and bead formation[J]. Applied Mathematical Modelling, 2018, 57: 339-359. [53]苏 杭, 潘学民, 刘梦思, 等. 激光熔覆基板的弯曲变形与残余应力研究[J]. 材料保护, 2019, 52(9): 72-76. Su Hang, Pan Xuemin, Liu Mengsi, et al. Analysis of bending deflection and residual stress for substrate of laser cladding[J]. Materials Protection, 2019, 52(9): 72-76. [54]Zhang H, Shi Y, Kutsuna M, et al. Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel[J]. Nuclear Engineering and Design, 2010, 240(10): 2691-2696. [55]Moskal G, Niemiec D, Chmiela B, et al. Microstructural characterization of laser-cladded NiCrAlY coatings on Inconel 625 Ni-based superalloy and 316L stainless steel[J]. Surface and Coatings Technology, 2020, 387: 125317. [56]Pereira Falcón J C, Echeverría A, Afonso C R M, et al. Microstructure assessment at high temperature in NiCoCrAlY overlay coating obtained by laser metal deposition[J]. Journal of Materials Research and Technology, 2019, 8(2): 1761-1772. [57]姚永强, 林 晨, 申井义, 等. 真空环境与基体预热对激光熔覆WC增强镍基合金涂层组织和性能的影响[J]. 机械工程材料, 2020, 44(5): 49-53. Yao Yongqiang, Lin Chen, Shen Jingyi, et al. Effect of vacuum environment and substrate preheating on microstructure and properties of laser cladding WC reinforced nickel-based alloy coating[J]. Materials for Mechanical Engineering, 2020, 44(5): 49-53. [58]赵龙志, 杨海超, 唐延川, 等. 预热温度对钢轨表面激光熔覆贝氏体涂层的影响[J]. 热加工工艺. 2019, 48(16): 102-105. Zhao Longzhi, Yang Haichao, Tang Yanchuan, et al. Effect of preheating temperature on laser clad bainitic coating on surface of steel rail[J]. Hot Working Technology, 2019, 48(16): 102-105. [59]Lu X, Liu X, Yu P, et al. Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding[J]. Applied Surface Science, 2015, 355: 350-358. [60]Huang L, Zhou J, Xu J, et al. Microstructure and wear resistance of electromagnetic field assisted multi-layer laser clad Fe901 coating[J]. Surface and Coatings Technology, 2020, 395: 125876. [61]Hu Y, Wang L, Yao J, et al. Effects of electromagnetic compound field on the escape behavior of pores in molten pool during laser cladding[J]. Surface and Coatings Technology, 2020, 383: 125198. |