[1]曹燕光. 渗碳齿轮钢淬透性及其热处理变形和疲劳性能研究[D]. 北京: 钢铁研究总院, 2017. Cao Yanguang. Study on hardenability, heat treatment distortion and fatigue properties of carburized gear steel[D]. Beijing: General Institute of Iron and Steel Research, 2017. [2]聂亚群. 低合金亚共析钢端淬试验的数值模拟研究[D]. 上海: 上海交通大学, 2015. Nie Yaqun. Research on the computer simulation of end-quench experiment for low-alloy hypoeutecoid steels[D]. Shanghai: Shanghai Jiao Tong University, 2015. [3]边 书. 高铁用25CrMo车轴钢淬透性的研究[D]. 沈阳: 沈阳理工大学, 2012. Bian Shu. Research on hardenability of 25CrMo axle steel used in high-speed rail[D]. Shenyang: Shenyang University of Technology, 2012. [4]曹燕光, 徐 乐, 时 捷, 等. SAE8620H齿轮钢的淬透性及其预测模型[J]. 金属热处理, 2016, 41(2): 188-192. Cao Yanguang, Xu Le, Shi Jie, et al. Hardenability and its prediction model of SAE8620H gear steel[J]. Heat Treatment of Metals, 2016, 41(2): 188-192. [5]Jansson B, Rolfson M, Thuvander A, et al. Calculation of microstructure and hardness of hot rolled steel bars[J]. Materials Science and Technology, 2013, 2(7): 118-127. [6]张 晓, 刘国权, 宋月鹏, 等. 淬火钢件冷却速度、显微组织和硬度分布的计算预报[J]. 钢铁研究学报, 2007, 19(12): 49-52. Zhang Xiao, Liu Guoquan, Song Yuepeng, et al. Prediction of spatial distribution of cooling rate, microstructure and hardness in steel components[J]. Journal of Iron and Steel Research, 2007, 19(12): 49-52. [7]Ruan S P, Zhao A M, Li Y C, et al. Effect of boron and chromium on hardenability in 0.33% C cold heading steel[J]. Materials Science Forum, 2016, 867(1): 24-28. [8]Zhang Y, Shu H B. Effect of Mn on hardenability of 25CrMo axle steel by animproved end-quench test[J]. China foundry, 2012, 9(4): 318-321. [9]宋月鹏, 刘国权, 李江涛, 等. 非线性方程法模型中合金元素交互作用因子的确定[J]. 材料热处理学报, 2008, 29(1): 152-156. Song Yuepeng, Liu Guoquan, Li Jiangtao, et al. Definition of alloying interaction factors in the improvment nonlinear equation simulation model[J]. Transactions of Materials and Heat Treatment, 2008, 29(1): 152-156. [10]宋月鹏, 刘国权, 李志林, 等. 合金元素淬透性系数的经验电子理论分析[J]. 中国科学(E辑: 技术科学), 2008, 38(7): 1042-1049. Song Yuepeng, Liu Guoquan, Li Zhilin, et al. Analysis of hardenability coefficient of alloy elements by empirical electron theory[J]. Science in China (Series E: Technical Science), 2008, 38(7): 1042-1049. [11]黄群超, 卢文壮, 李鹏程, 等. 18CrNiMo7-6齿轮钢淬火精确数值模拟[J]. 金属热处理, 2014, 39(2): 125-128. Huang Qunchao, Lu Wenzhuang, Li Pengcheng, et al. Accurate numerical simulation of quenching process of 18CrNiMo7-6 gear steel[J]. Heat Treatment of Metals, 2014, 39(2): 125-128. [12]宋月鹏, 刘国权, 刘建涛, 等. 基于梅尼尔模型端淬试样组织分布的预报预测[J]. 金属热处理, 2006, 31(3): 93-95. Song Yuepeng, Liu Guoquan, Liu Jiantao, et al. Prediction of microstructure distribution in quenched Jominy specimen by Maynier mathematic model[J]. Heat Treatment of Metals, 2006, 31(3): 93-95. [13]宋剑萍. 基于数学模拟的齿轮钢淬火组织场变化研究[J]. 环境技术, 2020, 38(2): 105-110. Song Jianping. Research on the change of quenching microstructure field of gear steel based on mathematical simulation[J]. Environmental Technology, 2020, 38(2): 105-110. |