[1]谢友柏. 摩擦学科学及工程应用现状与发展战略研究[M]. 北京: 高等教育出版社, 2009. [2]魏世忠, 徐流杰. 钢铁耐磨材料研究进展[J]. 金属学报, 2020, 54(4): 523-538. Wei Shizhong, Xu Liujie. Review on research progress of steel and iron wear-resistant materials[J]. Acta Metallurgica Sinica, 2020, 54(4): 523-538. [3]吴 昊, 邓想涛, 李成儒, 等. 耐磨钢NM400冷弯开裂分析[J]. 金属热处理, 2021, 46(9): 262-267. Wu Hao, Deng Xiangtao, Li Chengru, et al. Analysis on cold bending fracture of wear-resistant steel NM400[J]. Heat Treatment of Metals, 2021, 46(9): 262-267. [4]李灿明. 淬火工艺对耐磨钢NM400组织性能的影响[J]. 金属热处理, 2021, 46(6): 69-73. Li Canming. Effect of quenching on microstructure and properties of wear-resistant steel NM400[J]. Heat Treatment of Metals, 2021, 46(6): 69-73. [5]姜金星, 董俊媛, 王慧慧, 等. 回火工艺对厚规格NM450耐磨钢组织和硬度的影响[J]. 金属热处理, 2020, 45(1): 117-121. Jiang Jinxing, Dong Junyuan, Wang Huihui, et al. Effect of tempering on microstructure and hardness of thick gauge NM450 wear-resistant steel slab[J]. Heat Treatment of Metals, 2020, 45(1): 117-121. [6]邓想涛. 低合金耐磨钢组织性能控制及磨损机理研究[D]. 沈阳: 东北大学, 2014. [7]Deng Xiangtao, Wang Zhaodong, Han Yi, et al. Microstructure and abrasive wear behavior of medium carbon low alloy martensitic abrasion resistant steel[J]. Journal of Iron and Steel Research (International), 2014, 21(1): 98-103. [8]Xu Liujie, Wei Shizhong, Xiao Fangnao, et al. Effects of carbides on abrasive wear properties and failure behaviors of high speed steels with different alloy element content[J]. Wear, 2017, 376-377: 968-974. [9]Wei Shizhong, Zhu Jinhua, Xu Liujie, Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel[J]. Tribology International, 2005, 39(7): 641-648. [10]Huang Long, Deng Xiangtao, Jia Ye, et al. Effects of using (Ti, Mo)C particles to reduce the three-body abrasive wear of a low alloy steel[J]. Wear, 2018, 410-411: 119-126. [11]Huang Long, Deng Xiangtao, Li Chengru, et al. Effect of TiC particles on three-body abrasive wear behavior of low alloy abrasion-resistant steel[J]. Wear, 2019, 434-435: 202971. [12]Huang Long, Deng Xiangtao, Wang Qi, et al. Solidification and sliding wear behavior of low-alloy abrasion-resistant steel reinforced with TiC particles[J]. Wear, 2020, 458-459: 203444. [13]Huang Long, Deng Xiangtao, Wang Qi, et al. Microstructure, mechanical properties and wear resistance of low alloy abrasion resistant martensitic steel reinforced with TiC particles[J]. ISIJ International, 2020, 60(11): 2586-2595. [14]王日清, 邓想涛, 王昭东, 等. 含钛低合金超高强耐磨钢的连续冷却相变行为[J]. 钢铁研究学报, 2011, 23(5): 55-58, 62. Wang Riqing, Deng Xiangtao, Wang Zhaodong, et al. Continuous cooling transformation behavior of Ti-containing low-alloy ultra-high strength abrasion-resistant steel[J]. Journal of Iron and Steel Research, 2011, 23(5): 55-58, 62. [15]Dong Chen, Wu Huibin, Wang Xiangtao. Effect of tempering temperatures on microstructures and properties of 0.28C-0.22Ti wear-resistant steel[J]. Materials Science and Technology, 2018, 34(1): 86-94. [16]温长飞, 肖爱达, 刘旭辉, 等. 回火温度对低合金超高强钢Q1300组织与性能的影响[J]. 金属热处理, 2019, 44(2): 172-177. Wen Changfei, Xiao Aida, Liu Xuhui, et al. Effect of tempering temperature on microstructure and mechanical properties of low alloy ultra-high strength steel Q1300[J]. Heat Treatment of Metals, 2019, 44(2): 172-177. |