[1]Wang S, Cai W, Li J, et al. A novel rapid D.C. plasma nitriding at low gas pressure for 304 austenitic stainless steel[J]. Materials Letters, 2013, 105: 47-49. [2]Fraczek T, Ogorek M, Skuza Z, et al. Mechanism of ion nitriding of 316L austenitic steel by active screen method in a hydrogen-nitrogen atmosphere[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(5): 1357-1368. [3]De L H E, Ybarra G, Lamas D, et al. Plasma nitriding of 316L stainless steel in two different N2-H2 atmospheres-Influence on microstructure and corrosion resistance[J]. Surface and Coatings Technology, 2017, 313: 47-54. [4]Borgioli F, Galvanetto E, Bacci T. Surface modification of austenitic stainless steel by means of low pressure glow-discharge treatments with nitrogen[J]. Coatings, 2019, 9(10): 604. [5]Borgioli F. From austenitic stainless steel to expanded austenite-S phase: Formation, characteristics and properties of an elusive metastable phase[J]. Metals, 2020, 10(2): 187. [6]Fewell M P, Priest J M, Baldwin M J, et al. Nitriding at low temperature[J]. Surface & Coatings Technology, 2000, 131(1/3): 284-290. [7]Yang L, Zhuo W, Liang W. Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time[J]. Applied Surface Science, 2014, 298: 243-250. [8]申 思. 直流与双频电源联合驱动容性耦合放电的特性[D]. 大连: 大连理工大学, 2013. [9]刘 增. 脉冲等离子体刻蚀工艺中极板上离子能量和角度分布的研究[D]. 大连: 大连理工大学, 2016. [10]陈庆川, 霍岩锋, 曾旭初, 等. 叠加式直流脉冲偏压电源在离子镀设备中的应用[C]//全国荷电粒子源、粒子束学术会议, 2001. [11]麻晓琴. 氯氩感应耦合等离子体脉冲调制射频偏压对原子层刻蚀影响的研究[D]. 大连: 大连理工大学, 2017. [12]Economou D J. Pulsed plasma etching for semiconductor manufacturing[J]. Journal of Physics D: Applied Physics, 2014, 47(30): 303001. [13]Yang W J, Zhang M, Zhao Y H, et al. Enhancement of mechanical property and corrosion resistance of 316L stainless steels by low temperature arc plasma nitriding[J]. Surface and Coatings Technology, 2016, 298: 64-72. [14]Borgioli F, Galvanetto E, Bacci T. Low temperature nitriding of AISI 300 and 200 series austenitic stainless steels[J]. Vacuum, 2016, 127: 51-60. [15]Talonen J, Hnninen H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels[J]. Acta Materialia, 2007, 55(18): 6108-6118. [16]Frączek T, Ogórek M, Skuza Z. The effectiveness of active screen method in ion nitriding grade 5 ELI titanium alloy[J]. Metalurgija, 2020, 59(2): 167-170. [17]Fossati A, Borgioli F, Galvanetto E, et al. Glow-discharge nitriding of AISI 316L austenitic stainless steel: Influence of treatment time[J]. Surface and Coatings Technology, 2006, 200(11): 3511-3517. [18]杨 玲. 频率比对双频容性耦合等离子体SiO刻蚀的影响[D]. 苏州: 苏州大学, 2010. [19]Wang Liang, Xu Bin, Yu Zhiwei, et al. The wear and corrosion properties of stainless steel nitride by low-pressure plasma-arc source ion nitriding at low temperatures[J]. Surface & Coatings Technology, 2000, 130(2/3): 304-308. [20]Borgioli F, Galvanetto E, Bacci T. Surface modification of austenitic stainless steel by means of low pressure glow-discharge treatments with nitrogen[J]. Coatings, 2019, 9(10): 604. [21]Lu S, Zhao X, Li Z, et al. Enhanced performances of deep nitriding austenitic stainless steel by a novel complex treatment[J]. Materials Research Express, 2018, 6(1): 016507. |