[1]Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels[J]. Progress in Materials Science, 2018, 94: 174-242. [2]刘 倩, 郑小平, 张荣华, 等. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报, 2019, 33(7): 1215-1220. Liu Qian, Zheng Xiaoping, Zhang Ronghua, et al. Medium manganese high strength steel for automotive application: Status quo and prospects[J]. Materials Reports, 2019, 33(7): 1215-1220. [3]宋丽娜, 兰 鹏, 刘春秀, 等. 第 3 代汽车用中锰钢的研究现状[J]. 钢铁研究学报, 2015, 27(7): 1-8. Song Lina, Lan Peng, Liu Chunxiu, et al. Research situation of medium manganese steel for 3rd generation automobile sheet[J]. Journal of Iron and Steel Research, 2015, 27(7): 1-8. [4]董 瀚, 曹文全, 时 捷, 等. 第3代汽车钢的组织与性能调控技术[J]. 钢铁, 2011, 46(6): 1-11. Dong Han, Cao Wenquan, Shi Jie, et al. Microstructure and performance control technology of the 3rdgeneration auto sheet steels[J]. Iron and Steel, 2011, 46(6): 1-11. [5]Lee S, Lee K, Cooman B. Observation of the TWIP+ TRIP plasticity-enhancement mechanism in Al-added 6 Wt Pct medium Mn steel[J]. Metallurgical and Materials Transactions A, 2015, 46(6): 2356-2363. [6]曹佳丽, 赵爱民, 李 振, 等. 超细晶中锰钢温轧强化增塑机理[J]. 北京科技大学学报, 2013, 35(11): 1465-1471. Cao Jiali, Zhao Aimin, Li Zhen, et al. Mechanism of strengthening and plasticity improvement in warmrolling medium manganese steel with ultrafine grains[J]. Journal of University of Science and Technology Beijing, 2013, 35(11): 1465-1471. [7]Zhang R, Cao W Q, Peng Z J, et al. Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel[J]. Materials Science and Engineering A, 2013, 583: 84-88. [8]Hu Z P, Xu Y B, Zou Y, et al. Effect of intercritical rolling temperature on microstructure-mechanical property relationship in a medium Mn-TRIP steel containing δ ferrite[J]. Materials Science and Engineering A, 2018, 720: 1-10. [9]Zhao X M, Shen Y F, Qiu L N, et al. Effects of intercritical annealing temperature on mechanical properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C steel[J]. Materials, 2014, 7(12): 7891-7906. [10]陈连生, 李 跃, 张明山, 等. 两相区位错增殖对Mn元素配分及低碳钢贝氏体组织的影响[J]. 金属学报, 2017, 53(11): 1418-1426. Chen Liansheng, Li Yue, Zhang Mingshan, et al. Effect of intercritical dislocation multiplication to Mn partitioning and microstructure evolution of bainite in low carbon steel[J]. Acta Metallurgica Sinica, 2017, 53(11): 1418-1426. [11]Hajyakbary F, Sietsma J, Petrov R H, et al. A quantitative investigation of the effect of Mn segregation on microstructural properties of quenching and partitioning steels[J]. Scripta Materialia, 2017, 137: 27-30. [12]Tian Y Q, Cao Z Q, Li W, et al. Effect of intercritical deformation on tensile performance of a low-carbon Si-Mn steel processed by quenching and bainitic partitioning[J]. Journal of Iron and Steel Research International, 2020, 27(2): 208-216. [13]Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, A review[J]. Journal of Materials Science and Technology, 2017, 33(12): 1457-1464. [14]田亚强, 黎 旺, 郑小平, 等. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118. Tian Yaqiang, Li Wang, Zheng Xiaoping, et al. Application of alloy elements in quenching and partitioning steel: An overview[J]. Materials Reports, 2019, 33(7): 1109-1118. [15]陈连生, 张健杨, 田亚强, 等. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响[J]. 金属学报, 2015, 51(5): 527-536. Chen Liansheng, Zhang Jianyang, Tian Yaqiang, et al. Effect of Mn pre-partitioning on C partitioning and retained austenite of Q&P steels[J]. Acta Metallurgica Sinica, 2015, 51(5): 527-536. [16]陈连生, 胡宝佳, 宋进英, 等. 初始组织对低碳钢IQ&P工艺残留奥氏体及力学性能的影响[J]. 材料工程, 2017, 45(2): 96-101. Chen Liansheng, Hu Baojia, Song Jinying, et al. Effect of precursor microstructure on retained austenite and mechanical property of low carbon steels with IQ&P treatment[J]. Journal of Materials Engineering, 2017, 45(2): 96-101. [17]Li Z C, Misra R D K, Ding H, et al. The significant impact of pre-strain on the structure-mechanical properties relationship in cold-rolled medium manganese TRIP steel[J]. Materials Science and Engineering A, 2018, 712: 206-213. [18]Li Y J, Liu D, Chen D, et al. Response of retained austenite to quenching temperature in a novel low density Fe-Mn-Al-C steel processed by hot rolling-air cooling followed by non-isothermal partitioning[J]. Materials Science and Engineering A, 2019, 753: 197-207. [19]Moor E D, Matlock D K, Speer J G, et al. Austenite stabilization through manganese enrichment[J]. Scripta Materialia, 2011, 64(2): 185-188. [20]Xu H F, Zhao J, Cao W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn)[J]. Materials Science and Engineering A, 2012, 532: 435-442. [21]Li J J, Song R B, Li X, et al. Coupling nano-carbide strengthening with transformation induced plasticity effect to achieve over 1.5 GPa strength with 30% ductility in cold-rolled medium-Mn steel[J]. Vacuum, 2019, 167: 223-226. [22]Hui W J, Shao C W, Zhang Y J, et al. Microstructure and mechanical properties of medium Mn steel containing 3%Al processed by warm rolling[J]. Materials Science and Engineering A, 2017, 707: 501-510. [23]Song R, Ponge D, Raabe D. Mechanical properties of an ultrafine grained C-Mn steel processed by warm deformation and annealing[J]. Acta Materialia, 2005, 53(18): 4881-4892. |