[1]Savguira Y, North T H, Thorpe S J. Corrosion mechanisms in dissimilar AZ31/AZ80 friction stir welds[J]. Journal of the Electrochemical Society, 2018, 165(2): C1-C10. [2]Atrens A, Shi Z, Mehreen S U, et al. Review of Mg alloy corrosion rates[J]. Journal of Magnesium and Alloys, 2020(4): 989-998. [3]Liu H G, Cao F Y, Song G L, et al. Review of the atmospheric corrosion of magnesium alloys[J]. Journal of Materials Science and Technology, 2019, 35(9): 197-210. [4]Zhang C, Wu L, Huang G S, et al. Effect of microalloyed Ca on the microstructure and corrosion behavior of extruded Mg alloy AZ31[J]. Journal of Alloys and Compounds, 2020, 823: 153844. [5]Wu P P, Xu F J, Deng K K, et al. Effect of extrusion on corrosion properties of Mg-2Ca-xAl (x=0, 2, 3, 5) alloys[J]. Corrosion Science, 2017, 127: 280-290. [6]Heimann R B. Magnesium alloys for biomedical application: Advanced corrosion control through surface coating[J]. Surface and Coatings Technology, 2020, 405(1): 126521. [7]Jamili A M, Zarei-Hanzaki A, Abedi H R, et al. The microstructure, texture, and room temperature mechanical properties of friction stir processed Mg-Y-Nd alloy[J]. Materials Science and Engineering A, 2017, 690: 244-253. [8]Wang W, Han P, Peng P, et al. Friction stir processing of magnesium alloys: A review[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 43-57. [9]Mansoor B, Ghosh A K. Microstructure and tensile behavior of a friction stir processed magnesium alloy[J]. Acta Materialia, 2012, 60(13/14): 5079-5088. [10]Argade G R, Yuan W, Kandasamy K, et al. Stress corrosion cracking susceptibility of ultrafine grained AZ31[J]. Journal of Materials Science, 2012, 47(19): 6812-6822. [11]Saikrishna N, Pradeep K R G, Munirathinam B, et al. Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy[J]. Journal of Magnesium and Alloys, 2016, 4(1): 68-76. [12]李天麒, 闫原原, 郭 威, 等. FSP法制备细晶镁合金微观组织及其耐腐蚀性能[J]. 金属热处理, 2019, 44(8): 25-31. Li Tianqi, Yan Yuanyuan, Guo Wei, et al. Microstructure and corrosion resistance of fine-grained magnesium alloy prepared by FSP[J]. Heat Treatment of Metals, 2019, 44(8): 25-31. [13]Huang Liying, Wang Kuaishe, Wen Wang, et al. Effects of grain size and texture on stress corrosion cracking of friction stir processed AZ80 magnesium alloy[J]. Engineering Failure Analysis, 2018, 92: 392-404. [14]Gu X N, Zheng W, Cheng Y, et al. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate[J]. Acta Biomaterialia, 2009, 5(7): 2790-2799. [15]Li L, Gao J, Yong W. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid[J]. Surface and Coatings Technology, 2004, 185(1): 92-98. [16]高家诚, 李龙川, 王 勇, 等. 碱热处理镁及其在仿生模拟体液中耐蚀性能[J]. 金属热处理, 2005, 30(4): 38-42. Gao Jiacheng, Li Longchuan, Wang Yong, et al. Corrosion resistance of alkali heat treated magnesium in bionics simulated body fluid[J]. Heat Treatment of Metals, 2005, 30(4): 38-42. [17]Wang B J, Xu D K, Sun J, et al. Effect of grain structure on the stress corrosion cracking (SCC) behavior of an as-extruded Mg-Zn-Zr alloy[J]. Corrosion Science, 2019, 157: 347-356. [18]Aung N N, Wei Z. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy[J]. Corrosion Science, 2010, 52(2): 589-594. [19]Dou J, Wang J, Lu Y, et al. Bioactive MAO/CS composite coatings on Mg-Zn-Ca alloy for orthopedic applications[J]. Progress in Organic Coatings, 2021, 152: 106112. [20]Ge M Z, Xiang J Y, Yang L, et al. Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid[J]. Surface and Coatings Technology, 2017, 310: 157-165. [21]刘宝胜, 柴跃生, 张敏刚, 等. 热处理对压铸AZ91D镁合金的组织及腐蚀行为的影响[J]. 太原理工大学学报, 2016, 47(4): 460-465. Liu Baosheng, Chai Yuesheng, Zhang Mingang, et al. Effect research of heat treatment on microstructure and corrosion properties for die-casting AZ91D Mg alloy[J]. Journal of Taiyuan University of Technology, 2016, 47(4): 460-465. |