[1]安继儒, 郭 强. 金属材料手册[M]. 北京: 化学工业出版社, 2013. [2]宋 苏, 陈文智, 张广强, 等. 新型Fe80.5Si7.2B12.3非晶合金带材的退火工艺与磁性能[J]. 金属热处理, 2021, 46(1): 104-108. Song Su, Chen Wenzhi, Zhang Guangqiang, et al. Annealing process and magnetic properties of a new type Fe80.5Si7.2B12.3 amorphous alloy strip[J]. Heat Treatment of Metals, 2021, 46(1): 104-108. [3]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [4]隋艳伟, 陈 霄, 戚继球, 等. 多主元高熵合金的研究现状与应用展望[J]. 功能材料, 2016, 47(5): 05050-05054. Sui Yanwei, Chen Xiao, Qi Jiqiu, et al. Research process of high-entropy alloys with multi-principal elements and its prospective application[J]. Functional Materials, 2016, 47(5): 05050-05054. [5]杨上金, 吴 波, 刘灯宪, 等. 热处理对Al0.5CoCrCuFeNi高熵合金显微组织与硬度的影响[J]. 金属热处理, 2015, 40(11): 126-131. Yang Shangjin, Wu Bo, Liu Dengxian, et al. Effect of heat treatment on microstructure and hardness of multicomponent high entropy alloy Al0.5CoCrCuFeNi[J]. Heat Treatment of Metals, 2015, 40(11): 126-131. [6]季承维, 马爱斌, 江静华. 轻质高熵合金的研究现状与发展趋势[J]. 材料导报, 2020, 34(10): 19094-19100. Ji Chengwei, Ma Aibin, Jiang Jinghua. Research status and development trend of lightweight high-entropy alloys[J]. Materials Review, 2020, 34(10): 19094-19100. [7]Kaushik L, Kim M S, Singh J, et al. Deformation mechanisms and texture evolution in high entropy alloy during cold rolling[J]. International Journal of Plasticity, 2021, 141: 102989. [8]郭卫凡. 多主元高熵合金的研究进展[J]. 金属功能材料, 2009, 16(1): 49-53. Guo Weifan. Progress in high-entropy alloy with multi-principal elements[J]. Metallic Functional Materials, 2009, 16(1): 49-53. [9]高家诚, 李 锐. 高熵合金研究的新进展[J]. 功能材料, 2008(7): 1059-1061. Gao Jiacheng, Li Rui. The development of studies in high-entropy alloy[J]. Functional Materials, 2008(7): 1059-1061. [10]Li Y, Shi Y. Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding[J]. Optics and Laser Technology, 2021, 134: 106632. [11]李 伟, 刘贵仲, 郭景杰. AlFeCuCoNiCrTix高熵合金的组织结构及电化学性能[J]. 特种铸造及有色合金, 2009, 29(10): 941-944. Li Wei, Liu Guizhong, Guo Jingjie. Microstructure and electrochemical properties of AlFeCuCoNiCrTix high entropy alloys[J]. Special Casting & Nonferrous Alloys, 2009, 29(10): 941-944. [12]许金亮, 汪 涛, 张陕南, 等. 铸态CrxNbTiZr高熵合金的组织与性能研究[J]. 稀有金属与硬质合金, 2020, 48(4): 53-58. Xu Jinliang, Wang Tao, Zhang Shannan, et al. Research on the microstructure and properties of the as-cast CrxNbTiZr high entropy alloys[J]. Rare Metals and Cemented Carbides, 2020, 48(4): 53-58. [13]吴刚刚, 汪选国, 曾 鲜, 等. TC4表面激光熔覆AlCoCrFeNiTi0.5高熵合金层的组织与性能[J]. 金属热处理, 2019, 44(12): 1-5. Wu Ganggang, Wang Xuanguo, Zeng Xian, et al. Microstructure and properties of laser clad AlCoCrFeNiTi0.5 high-entropy alloy coating on TC4 surface[J]. Heat Treatment of Metals, 2019, 44(12): 1-5. [14]赵龙志, 喻世豪, 赵明娟, 等. B对FeCoCrNiSiBx高熵合金激光熔覆层组织和硬度的影响[J]. 金属热处理, 2020, 45(10): 187-191. Zhao Longzhi, Yu Shihao, Zhao Mingjuan, et al. Effect of B on microstructure and hardness of FeCoCrNiSiBx high entropy alloy laser clad coating[J]. Heat Treatment of Metals, 2020, 45(10): 187-191. [15]张 洁, 程晓农, 罗 锐, 等. 碳化硼对高熵合金结构及性能的影响[J]. 金属热处理, 2020, 45(6): 173-177. Zhang Jie, Cheng Xiaonong, Luo Rui, et al. Effect of B4C on microstructure and properties of high-entropy alloy[J]. Heat Treatment of Metals, 2020, 45(6): 173-177. [16]刘径舟, 刘洪喜, 邸英南, 等. 碳含量对激光熔覆CoCrFeMnNiCx高熵合金涂层摩擦磨损和耐蚀性能的影响[J]. 中国表面工程, 2020(6): 118-127. Liu Jingzhou, Liu Hongxi, Di Yingnan, et al. Effects of carbon content on friction and wear behavior and corrosion resistance of laser cladding CoCrFeMnNiCx high entropy alloy coatings[J]. China Surface Engineering, 2020(6): 118-127. [17]Laurent-Brocq M, Akhatora A, Perrière L, et al. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy[J]. Acta Materialia, 2015, 88: 355-365. |