[1]Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel[J]. Acta Materialia, 2014, 65: 251-258. [2]Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J]. Acta Materialia, 2014, 78: 369-377. [3]Wang C, Cao W Q, Han Y, et al. Influences of austenization temperature and annealing time on duplex ultrafine microstructure and mechanical properties of medium Mn steel[J]. Journal of Iron and Steel Research, International, 2015, 22(1): 42-47. [4]Speer J G, Edmonds D V, Rizzo F C, et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3-4): 219-237. [5]Da Silva A K, Inden G, Kumar A, et al. Competition between formation of carbides and reversed austenite during tempering of a medium-manganese steel studied by thermodynamic-kinetic simulations and atom probe tomography[J]. Acta Materialia, 2018, 147: 165-175. [6]Speer J, Matlock D K, DeCooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [7]Ariza-Echeverri E A, Masoumi M, Nishikawa A S, et al. Development of a new generation of quench and partitioning steels: Influence of processing parameters on texture, nanoindentation, and mechanical properties[J]. Materials and Design, 2020, 186: 108329. [8]Zhu J N, Ding R, He J G, et al. A cyclic austenite reversion treatment for stabilizing austenite in the medium manganese steels[J]. Scripta Materialia, 2017, 136: 6-10. [9]邢兆贺. 逆转变淬火配分对低碳硅锰钢显微组织及力学性能的影响[D]. 济南: 山东建筑大学, 2019. [10]田亚强, 毕文强, 潘红波, 等. 碳化物演变对冷轧ART0.1C-7Mn钢Lüders行为影响[J]. 钢铁研究学报, 2020, 32(6): 505-511. Tian Yaqiang, Bi Wenqiang, Pan Hongbo, et al. Effect of carbide evolution on Lüders behavior of cold rolled ART 0.1C-7Mn steel[J]. Journal of Iron and Steel Research, 2020, 32(6): 505-511. [11]Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review[J]. Journal of Materials Science and Technology, 2017, 33(12): 1457-1464. [12]田亚强, 田 耕, 郑小平, 等. C, Mn元素对淬火配分贝氏体钢残留奥氏体稳定性的影响[J]. 金属热处理, 2019, 44(7): 112-116. Tian Yaqiang, Tian Geng, Zheng Xiaoping, et al. Influence of C and Mn elements on stability of retained austenite in quenching and partitioning bainitic steel[J]. Heat Treatment of Metals, 2019, 44(7): 112-116. [13]田亚强, 曹仲乾, 潘红波, 等. 两相区温度对中锰钢 IQ&P 处理后组织和力学性能的影响[J]. 金属热处理, 2020, 45(7): 37-41. Tian Yaqiang, Cao Zhongqian, Pan Hongbo, et al. Effect of intercritical temperature on microstructure and mechanical properties of medium manganese steel after IQ&P treatment[J]. Heat Treatment of Metals, 2020, 45(7): 37-41. [14]田亚强, 黎 旺, 郑小平, 等. 两相区退火中锰 TRIP 钢残余奥氏体含量与加工硬化行为[J]. 塑性工程学报, 2019, 26(2): 199-205. Tian Yaqiang, Li Wang, Zheng Xiaoping, et al. Retained austenite content and work-hardening behavior in intercritical annealing medium manganese TRIP steel[J]. Journal of Plasticity Engineering, 2019, 26(2): 199-205. [15]田亚强, 黎 旺, 郑小平, 等. 两相区形变对中锰钢逆相奥氏体稳定性及其断裂性能的影响[J]. 金属热处理, 2019, 44(5): 36-41. Tian Yaqiang, Li Wang, Zheng Xiaoping, et al. Effect of intercritical deformation on reversed austenite stability of medium manganese steel and its fracture properties[J]. Heat Treatment of Metals, 2019, 44(5): 36-41. |