[1]刘 燕, 王毛球, 刘国权. 回火温度对40CrNi3MoV钢组织和力学性能的影响[J]. 金属热处理, 2014, 39(6): 41-45. Liu Yan, Wang Maoqiu, Liu Guoquan. Effect of tempering temperature on microstructure and mechanical properties of 40CrNi3MoV steel[J]. Heat Treatment of Metals, 2014, 39(6): 41-45. [2]王小龙, 王毛球, 孟 彬, 等. 回火工艺对Cr-Ni-Mo-V高强钢组织和力学性能的影响[J]. 金属热处理, 2017, 42(12): 135-140. Wang Xiaolong, Wang Maoqiu, Meng Bin, et al. Effect of tempering process on microstructure and mechanical properties of Cr-Ni-Mo-V high strength steel[J]. Heat Treatment of Metals, 2017, 42(12): 135-140. [3]王毛球, 董 瀚, 王 琪, 等. 高强度炮钢的组织和力学性能[J]. 兵器材料科学与工程, 2003, 26(2): 7-10. Wang Maoqiu, Dong Han, Wang Qi, et al. Microstructure and mechanical properties of high strength gun steel[J]. Ordnance Materials Science and Engineering, 2003, 26(2): 7-10. [4]邹伟龙, 王毛球, 时 捷, 等. 热处理对25CrNi3MoV钢组织与力学性能的影响[J]. 金属热处理, 2008, 33(7): 69-72. Zou Weilong, Wang Maoqiu, Shi Jie, et al. Influence of heat treatment on microstructure and mechanical properties of 25CrNi3MoV steel[J]. Heat Treatment of Metals, 2008, 33 (7): 69-72. [5]张 楠, 吕超然, 徐 乐. 火炮身管用钢现状及发展趋势[J]. 中国冶金, 2019, 29(5): 6-9. Zhang Nan, Lu Chaoran, Xu Le. Current status and development trend of gun barrel steel[J]. China Metallurgy, 2019, 29(5): 6-9. [6]罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512. Luo Haiwen, Shen Guohui. Progress and perspective of ultra-high strength steels having high toughness[J]. Acta Metallurgica Sinica, 2020, 56(4): 494-512. [7]Millán J, Sandlöbes S, Al-Zubi A, et al. Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe-Mn maraging steels[J]. Acta Materialia, 2014, 76: 94-105. [8]杜瑜宾, 张守清, 胡小锋, 等. 含1.4%Cu的HSLA钢的组织和力学性能[J]. 金属学报, 2020, 56(10): 1343-1354. Du Yubin, Zhang Shouqing, Hu Xiaofeng, et al. Microstructure and mechanical properties of HSLA steel containing 1.4% Cu[J]. Acta Metallurgica Sinica, 2020, 56 (10): 1343-1354. [9]Kapoor M, Isheim D, Ghosh G, et al. Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel[J]. Acta Materialia, 2014, 73: 56-74. [10]沈 琴. 钢中富Cu相和NiAl相复合析出机制的研究[D]. 上海: 上海大学, 2018. Shen Qin. Co-precipitation mechanisms research of Cu-rich and NiAl phases in steel[D]. Shanghai: Shanghai University, 2018. [11]Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles[J]. Acta Materialia, 2015, 97: 58-67. [12]韩永强, 王宇斌, 陈 旋, 等. 三维原子探针表征10Ni3MnCuAl钢时效过程中析出相NiAl和Cu的变化规律[J]. 材料导报, 2019, 33(24): 4136-4140. Han Yongqiang, Wang Yubin, Chen Xuan, et al. Characterization of NiAl and Cu precipitates in 10Ni3MnCuAl steel by three dimensional atomic probe during aging[J]. Materials Reports, 2019, 33(24): 4136-4140. [13]Xu S S, Liu Y W, Zhang Y, et al. Precipitation kinetics and mechanical properties of nanostructured steels with Mo additions[J]. Materials Research Letters, 2020, 8(5): 187-194. [14]Zhou B C, Yang T, Zhou G, et al. Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning[J]. Acta Materialia, 2021, 205: 116561. |