[1]侯淞学, 彭 涛, 王 雪, 等. 稀土Al-Mg-Si合金导线的热处理与性能研究[J]. 热加工工艺, 2018, 47(6): 215-218. Hou Songxue, Peng Tao, Wang Xue, et al. Study on heat treatment and properties of rare earth Al-Mg-Si alloy wire[J]. Hot Working Technology, 2018, 46(6): 215-218. [2]刘 斌, 郑 秋, 党 朋, 等. 铝合金在架空导线领域的应用及发展[J]. 电线电缆, 2012, 4(8): 10-15. Liu Bin, Zheng Qiu, Dang Peng, et al. Development and applications of aluminum alloy in overhead lines[J]. Electric Wire and Cable, 2012, 4(8): 10-15. [3]何 健, 陈 光. 新型铝合金芯铝绞线在输电线路中的应用[J]. 吉林电力, 2010, 38(2): 48-51. He Jian, Chen Guang. Application of new type aluminum cored aluminum stranded wire in transmission lines[J]. Jilin Electric Power, 2010, 38(2): 48-51. [4]宋文硕, 宋竹满, 罗雪梅, 等. 温度对6101铝合金导线拉伸性能的影响[J]. 材料研究学报, 2020, 34(10): 730-736. Song Wenshuo, Song Zhuman, Luo Xuemei, et al. Effect of temperature on tensile properties of 6101 Al-alloy wires[J]. Chinese Journal of Materials Research, 2020, 34(10): 730-736. [5]Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors[J]. Materials and Design, 2006, 27(10): 821-832. [6]Karabay S. Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting[J]. Materials and Design, 2008, 29(7): 1364-1375. [7]杨 莉, 陆冠华, 康跃华, 等. 时效工艺对Al-Mg-Si合金导线抗拉强度和导电率的影响[J]. 材料研究与应用, 2018, 12(1): 32-35. Yang Li, Lu Guanhua, Kang Yuehua, et al. Effect of aging process on tensile strength and electrical conductivity of Al-Mg-Si alloy wires[J]. Materials Research and Application, 2018, 12(1): 32-35. [8]刘东雨, 高 倩, 李宝让, 等. 6×××系铝合金导体材料的时效行为[J]. 材料热处理学报, 2013, 34(S1): 7-11. Liu Dongyu, Gao Qian, Li Baorang, et al. Aging behaviors of 6××× series aluminum alloy for conductor materials[J]. Transactions of Materials and Heat Treatment, 2013, 34(S1): 7-11. [9]Buchanan K, Colas K, Ribis J, et al. Analysis of the metastable precipitates in peak-hardness aged Al-Mg-Si(-Cu) alloys with differing Si contents[J]. Acta Materialia, 2017, 132: 209-221. [10]Ding L P, Jia Z H, Zhang Z Q, et al. The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions[J]. Materials Science and Engineering A, 2015, 627: 119-126. [11]李佳双, 屈 敏, 崔 岩, 等. Si、Mg含量对Al-Mg-Si合金显微组织及显微硬度的影响[J]. 金属热处理, 2016, 41(12): 69-74. Li Jiashuang, Qu Min, Cui Yan, et al. Effect of Si, Mg content on microstructure and microhardness of Al-Mg-Si alloy[J]. Heat Treatment of Metals, 2016, 41(12): 69-74. [12]Marioara C D, Andersen S J, Zandbergen H W, et al. The influence of alloy composition on precipitates of the Al-Mg-Si system[J]. Metallurgical and Materials Transactions A, 2005, 36(3): 691-702. [13]Seifeddine S, Svensson I L. Prediction of mechanical properties of cast aluminium components at various iron contents[J]. Materials and Design, 2010, 31: S6-S12. [14]张新明, 柯 彬, 唐建国, 等. Mn含量对6061铝合金组织与力学性能的影响[J]. 材料研究学报, 2013, 27(4): 337-341. Zhang Xinming, Ke Bin, Tang Jianguo, et al. Effects of Mn content on microstructure and mechanical properties of 6061 aluminum alloy[J]. Chinese Journal of Materials Research, 2013, 27(4): 337-341. [15]Lin G Y, Zhang Z P, Wang H Y, et al. Enhanced strength and electrical conductivity of Al-Mg-Si alloy by thermo-mechanical treatment[J]. Materials Science and Engineering A, 2016, 650: 210-217. [16]Fu J N, Yang Z, Deng Y F, et al. Influence of Zr addition on precipitation evolution and performance of Al-Mg-Si alloy conductor[J]. Materials Characterization, 2020, 159: 110021. [17]Edwards G A., Stiller K, Dunlop G L, et al. The precipitation sequence in Al-Mg-Si alloys[J]. Acta Materialia, 1998, 46(11): 3893-3904. [18]Yang W C, Wang M P, Zhang R R, et al. The diffraction patterns from β″ precipitates in 12 orientations in Al-Mg-Si alloy[J]. Scripta Materialia, 2010, 62(9): 705-708. [19]Andersen S J, Zandbergen H W, Jansen J, et al. The crystal structure of the β″ phase in Al-Mg-Si alloys[J]. Acta Materialia, 1998, 46(9): 3283-3298. [20]Hasting H S, Froseth A G, Andersen S J, et al. Composition of β″ precipitates in Al-Mg-Si alloys by atom probe tomography and first principles calculations[J]. Journal of Applied Physics, 2009, 106(12): 123527. [21]Ehlers F J H. Ab initio interface configuration determination for β″ in Al-Mg-Si: Beyond the constraint of a preserved precipitate stoichiometry[J]. Computational Materials Science, 2014, 81: 617-629. [22]Ninive P H, Strandlie A, Gulbrandsen-Dahl S, et al. Detailed atomistic insight into the β″ phase in Al-Mg-Si alloys[J]. Acta Materialia, 2014, 69: 126-134. [23]Esmaeili S, Lloyd D J, Poole W J. A yield strength model for the Al-Mg-Si-Cu alloy AA6111[J]. Acta Materialia, 2003, 51(8): 2243-2257. [24]Wang X, Embury J D, Poole W J, et al. Precipitation strengthening of the aluminum alloy AA6111[J]. Metallurgical and Materials Transactions A, 2003, 34(12): 2913-2924. [25]Deschamps A, Brechet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy—II. Modeling of precipitation kinetics and yield stress[J]. Acta Materialia, 1998, 47(1): 293-305. [26]Myhr O R, Grong Φ, Andersen S J. Modelling of the age hardening behaviour of Al-Mg-Si alloys[J]. Acta Materialia, 2001, 49(1): 65-75. [27]Kocks U K, Mecking H. Physics and phenomenology of strain hardening: the FCC case[J]. Progress in Materials Science, 2003, 48(3): 171-273. [28]Liu G, Zhang G J, Ding X D, et al. The influences of multiscale-sized second-phase particles on ductility of aged aluminum alloys[J]. Metallurgical and Materials Transactions A, 2004, 35(6): 1725-1734. [29]Komori K. Proposal and use of a void model for the simulation of ductile fracture behavior[J]. Acta Materialia, 1999, 47(10): 3069-3077. [30]张向宇, 熊 计, 赵国忠, 等. 稀土La对6063铝合金组织与时效性能的影响[J]. 有色金属, 2010, 62(1): 1-5. Zhang Xiangyu, Xiong Ji, Zhao Guozhong, et al. Effect of rare earth La on microstructures and ageing characteristics of 6063 aluminum alloy[J]. Nonferrous Metals, 2010, 62(1): 1-5. [31]Hosseinifar M, Malakhov D V. Effect of Ce and La on microstructure and properties of a 6××× series type aluminum alloy[J]. Journal of Materials Science, 2008, 43(22): 7157-7164. [32]Ghosh G, Miyake J, Fine M E. The systems-based design of high-strength, high-conductivity alloys[J]. JOM, 1997, 49(3): 56-60. [33]Hou J P, Wang Q, Zhang Z J, et al. Nano-scale precipitates: The key to high strength and high conductivity in Al alloy wire[J]. Materials and Design, 2017, 132: 148-157. [34]康福伟, 王丽萍, 张显有. 微量稀土元素对工业纯铝电阻率的影响[J]. 哈尔滨理工大学学报, 2003, 8(6): 112-114. Kang Fuwei, Wang Liping, Zhang Xianyou. Effect of microscale rare earth elements on electrical resistivity of industrial pure aluminum[J]. Journal of Harbin University of Science and Technology, 2003, 8(6): 112-114. |