[1]李 平, 王祝堂. 汽车压铸及铸造铝合金[J]. 轻合金加工技术, 2011, 39(12): 1-19. Li Ping, Wang Zhutang. Die casting and casting aluminum alloys for automobile[J]. Light Alloy Fabrication Technology, 2011, 39(12): 1-19. [2]明君剑. 汽车轻量化材料及制造工艺研究现状[J]. 现代制造技术与装备, 2020, 56(10): 146-147. Ming Junjian. Research status of automobile lightweight materials and manufacturing technology[J]. Modern Manufacturing Technology and Equipment, 2020, 56(10): 146-147. [3]宗福春, 葛素静, 钱伟涛, 等. 合金元素和浇注温度对AlSi9Cu3铝合金收缩率和流动性的影响[J]. 热加工工艺, 2021, 50(15): 45-47. Zong Fuchun, Ge Sujing, Qian Weitao, et al. Effect of alloy elements and pouring temperature on shrinkage and fluidity of AlSi9Cu3 aluminum alloy[J]. Hot Working Technology, 2021, 50(15): 45-47. [4]樊振中, 袁文全, 王端志, 等. 压铸铝合金研究现状与未来发展趋势[J]. 铸造, 2020, 69(2): 159-166. Fan Zhenzhong, Yuan Wenquan, Wang Duanzhi, et al. Research status and future development trend of die casting aluminum alloys[J]. Foundry, 2020, 69(2): 159-166. [5]王春涛, 姚 杰. 压铸铝合金的研究进展[J]. 模具工业, 2019, 45(8): 1-5. Wang Chuntao, Yao Jie. Research progress of die casting aluminum alloy[J]. Die and Mould Industry, 2019, 45(8): 1-5. [6]刘 斌, 何国求, 樊康乐, 等. 铸造铝合金AlSi9Cu3低周疲劳行为[J]. 功能材料, 2014, 45(4): 4047-4051. Liu Bin, He Guoqiu, Fan Kangle, et al. Low-cycle fatigue behavior of cast AlSi9Cu3 aluminum alloy[J]. Journal of Functional Materials, 2014, 45(4): 4047-4051. [7]刘 祥, 任 飞, 胡文平, 等. AlSi9Cu3铝合金变速箱外壳高压铸造模拟分析[J]. 铸造技术, 2018, 39(6): 1243-1247. Liu Xiang, Ren Fei, Hu Wenping, et al. Simulation and analysis of AlSi9Cu3 aluminum alloy gearbox shell in high pressure die casting[J]. Foundry Technology, 2018, 39(6): 1243-1247. [8]Cecchel S, Panvini A, Cornacchia G. Low solution temperature heat treatment of AlSi9Cu3(Fe) high-pressure die-casting actual automotive components[J]. Journal of Materials Engineering and Performance, 2018, 27(8): 3791-3802. [9]Pabel T, Geier G F, Rockenschaub H, et al. Improved mechanical properties of the high pressure die casting alloy AlSi9Cu3(Fe)(Zn) as a result of the combination of natural and artificial ageing[J]. International Journal of Materials Research, 2007, 98(6): 516-520. [10]Sjölander E, Seifeddine S. Artificial ageing of Al-Si-Cu-Mg casting alloys[J]. Materials Science and Engineering: A, 2011, 528(24): 7402-7409. [11]Sjölander E, Seifeddine S. The heat treatment of Al-Si-Cu-Mg casting alloys[J]. Journal of Materials Processing Technology, 2010, 210(10): 1249-1259. [12]吴 锵, 刘 瑛, 丁锡锋. 材料科学基础[M]. 北京: 国防工业出版社, 2012. [13]Brodarac Z Z, Dolić N, Unkić F. Influence of copper content on microstructure development of AlSi9Cu3 alloy[J]. Journal of Mining and Metallurgy B: Metallurgy, 2014, 50(1): 53-60. [14]Sanna F, Fabrizi A, Ferraro S, et al. Multiscale characterisation of AlSi9Cu3(Fe) die casting alloys after Cu, Mg, Zn and Sr addition[J]. La Metallurgia Italiana, 2013, 105(4): 13-24. [15]Reyes A E S, Guerrero G A, Ortiz G R, et al. Microstructural, microcratch and nanohardness mechanical characterization of secondary commercial HPDC AlSi9Cu3-type alloy[J]. Journal of Materials Research and Technology, 2020, 9(4): 8266-8282. |