[1]Han D. High performance steels: Initiative and practice[J]. Science China Technological Sciences, 2012, 55(7): 1774-1790. [2]狄国标, 刘振宇, 郝利强, 等. 海洋平台用钢的生产现状及发展趋势[J]. 机械工程材料, 2008, 32(8): 1-3. Di Guobiao, Liu Zhenyu, Hao Liqiang, et al. Present production state and development tendency of offshore platform steels[J]. Materials for Mechanical Engineering, 2008, 32(8): 1-3. [3]Xie Z J, Fang Y P, Han G, et al. Structure-property relationship in a 960 MPa grade ultrahigh strength low carbon niobium-vanadium microalloyed steel: The significance of high frequency induction tempering[J]. Materials Science and Engineering A, 2014, 618(17): 112-117. [4]王国栋. 高质量中厚板生产关键共性技术研发现状和前景[J]. 轧钢, 2019, 36(1): 1-8. Wang Guodong. Status and prospects of research and development of key common technologies for high-quality heavy and medium plate production[J]. Steel Rolling, 2019, 36(1): 1-8. [5]康永林. 中国中厚板产品生产现状及发展趋势[J]. 中国冶金, 2012, 22(9): 1-4. Kang Yonglin. Production status and development trend of medium and heavy plate in China[J]. China Metallurgy, 2012, 22(9): 1-4. [6]黄 维, 张志勤, 高真凤, 等. 日本海洋平台用厚板开发现状[J]. 轧钢, 2012, 29(3): 38-42. Huang Wei, Zhang Zhiqin, Gao Zhenfeng, et al. Development status of steel plate used for offshore platform in Japan[J]. Steel Rolling, 2012, 29(3): 38-42. [7]程新安. 国外舰船用钢的回顾与展望[J]. 材料开发与应用, 1997, 12(2): 46-48. Cheng Xin'an. Retrospect and prospect of foreign shipsteel[J]. Development and Application of Materials, 1997, 12(2): 46-48. [8]王文杰. 高性能先进舰船用合金材料的应用现状及展望[J]. 材料导报, 2013, 27(7): 98-105. Wang Wenjie. The application status and perspective of alloys for high performance and advanced naval vessels[J]. Materials Review, 2013, 27(7): 98-105. [9]尹士科, 何长红, 李亚琳. 美国和日本的潜艇用钢及其焊接材料[J]. 材料开发与应用, 2008, 23(1): 58-65. Yin Shike, He Changhong, Li Yalin. Submarine steel and welding consumables used in American and Japan[J]. Development and Application of Materials, 2008, 23(1): 58-65. [10]张润智, 刘志琦. 控轧控冷工艺中终冷温度对高强建筑用钢组织与拉伸性能的影响[J]. 机械工程材料, 2020, 44(7): 66-69. Zhang Runzhi, Liu Zhiqi. Effect of final cooling temperature in controlled rolling and cooling process on microstructure and tensile properties of high strength building steel[J]. Materials for Mechanical Engineering, 2020, 44(7): 66-69. [11]杨建勋. 800 MPa级低合金高强钢板屈强比影响因素[J]. 金属热处理, 2013, 38(3): 52-55. Yang Jianxun. Factors influencing yield ratio of 800 MPa grade HSLA steel plate[J]. Heat Treatment of Metals, 2013, 38(3): 52-55. [12]钱亚军, 于 青, 袁仁平. TMCP工艺对高强韧海工用特厚板低温韧性的影响[J]. 金属材料与冶金工程, 2019, 47(3): 42-48. Qian Yajun, Yu Qing, Yuan Renping. Effect of TMCP process on low temperature toughness of high performance ultra heavy plates for marine engineering[J]. Metal Materials and Metallurgy Engineering, 2019, 47(3): 42-48. [13]钟培道. 断裂失效分析[J]. 理化检验(物理分册), 2005, 41(7): 375-378. Zhong Peidao. Fracture failure analysis[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2005, 41(7): 375-378. |