[1]朱 静, 顾家琳, 周惠华, 等. 高速列车空心车轴国产化的选材和试制[J]. 中国铁道科学, 2015, 36(2): 60-67. Zhu Jing, Gu Jialin, Zhou Huihua, et al. Material selection and trial manufacture for locallization of hollow axle for high speed train[J]. China Railway Science, 2015, 36(2): 60-67. [2]李桂仙. 高速铁路车轴材质的优化选择[J]. 铁路采购与物流, 2008(2): 34-35. Li Guixian. Optimal selection of axle material for high-speed railway[J]. Railway Purchasing and Logistics, 2008(2): 34-35. [3]周平宇. 高速动车组车轴材料及疲劳设计方法[J]. 铁道车辆, 2009, 47(2): 29-31, 48. Zhou Pingyu. The axle material and fatigue design method for high speed multiple units[J]. Rolling Stock, 2009, 47(2): 29-31, 48. [4]Zerbst U, Beretta S, Kohler G, et al. Safe life and damage tolerance aspects of railway axles-A review[J]. Engineering Fracture Mechanics, 2013, 98: 214-221. [5]Khan A S, Liu H. Strain rate and temperature dependent fracture criteria for isotropic and anisotropic metals[J]. International Journal of Plasticity, 2012, 37: 1-15. [6]蔡 红, 叶 俭, 王丽莲, 等. 高铁车轴用34CrNiMo6钢的热处理工艺[J]. 金属热处理, 2012, 37(4): 95-98. Cai Hong, Ye Jian, Wang Lilian, et al. Heat treatment process of 34CrNiMo6 steel for high-speed railway axle[J]. Heat Treatment of Metals, 2012, 37(4): 95-98. [7]Pruncu C I, Hopper C, Hooper P A, et al. Study of the effects of hot forging on the additively manufactured stainless steel preforms[J]. Journal of Manufacturing Processes, 2020, 57: 668-676. [8]Venet G, Baudouin C, Pondaven C, et al. Parameter identification of 42CrMo4 steel hot forging plastic flow behaviour using industrial upsetting presses and finite element simulations[J]. International Journal of Material Forming, 2021, 14: 929-945. [9]刘 乐. 40CrNiMo钢辊轴的热处理工艺[J]. 金属热处理, 2013, 38(10): 84-85. Liu Le. Heat treatment process of 40CrNiMo steel roller shaft[J]. Heat Treatment of Metals, 2013, 38(10): 84-85. [10]梁晓捷, 刘建生, 党淑娥, 等. 40CrNiMo钢替代进口钎尾的热处理工艺[J]. 金属热处理, 2015, 40(1): 99-103. Liang Xiaojie, Liu Jiansheng, Dang Shue, et al. Heat treatment process of 40CrNiMo steel for replacing imported shank[J]. Heat Treatment of Metals, 2015, 40(1): 99-103. [11]Kong D, Zhang L. Effects of laser quenching on impact toughness and fracture morphologies of 40CrNiMo high strength steel[J]. Journal of Materials Engineering and Performance, 2014, 23(10): 3695-3702. [12]王敬忠, 李科元, 刘阿娇, 等. 40CrNiMo钢国内外研究现状[J]. 钢铁, 2018, 53(5): 1-10. Wang Jingzhong, Li Keyuan, Liu Ajiao, et al. Research status of 40CrNiMo steel at home and abroad[J]. Iron and Steel, 2018, 53(5): 1-10. [13]Wang W, Ma R, Li L, et al. Constitutive analysis and dynamic recrystallization behavior of as-cast 40CrNiMo alloy steel during isothermal compression[J]. Journal of Materials Research and Technology, 2020, 9(2): 1929-1940. [14]Zhai R, Wang W, Ma R, et al. Hot deformation behavior and processing map of as-cast 40CrNiMo alloy steel[J]. Journal of Materials Engineering and Performance, 2020, 29(2): 964-974. [15]Zhang H, Li Z, He W, et al. Damage mechanisms evolution of TiN/Ti multilayer films with different modulation periods in cyclic impact conditions[J]. Applied Surface Science, 2021, 540: 148366. [16]Tancogne-Dejean T, Roth C C, Morgeneyer T F, et al. Ductile damage of AA2024-T3 under shear loading: Mechanism analysis through in-situ laminography[J]. Acta Materialia, 2021, 205: 116556. [17]Yun G J, Zhu F Y, Lim H J, et al. A damage plasticity constitutive model for wavy CNT nanocomposites by incremental Mori-Tanaka approach[J]. Composite Structures, 2021, 258: 113178. [18]霍元明, 王宝雨, 林建国, 等. 楔横轧高铁车轴钢25CrMo4塑性损伤形成机理[J]. 东北大学学报(自然科学版), 2013, 34(11): 1625-1629. Huo Yuanming, Wang Baoyu, Lin Jianguo, et al. Damage mechanisms research for the high-speed railway axle steel 25CrMo4 during hot cross wedge rolling[J]. Journal of Northeastern University (Natural Science), 2013, 34(11): 1625-1629. [19]Li Q, Lovell M R, Slaughter W, et al. Investigation of the morphology of internal defects in cross wedge rolling[J]. Journal of Materials Processing Technology, 2002, 125-126: 248-257. [20]Silva M, Pires G H, Button S T. Damage evolution during cross wedge rolling of steel DIN 38MnSiVS5[J]. Procedia Engineering, 2011, 10: 752-757. [21]Lin J, Liu Y, Dean T A. A review on damage mechanisms, models and calibration methods under various deformation conditions[J]. International Journal of Damage Mechanics, 2005, 14(4): 299-319. [22]Shang X Q, Cui Z S, Fu M W. Dynamic recrystallization based ductile fracture modeling in hot working of metallic materials[J]. International Journal of Plasticity, 2017, 95: 105-122. [23]陈 飞, 任发才. Inconel 718镍基高温合金热加工动态再结晶建模与计算[J]. 精密成形工程, 2021, 13(1): 61-65. Chen Fei, Ren Facai. Dynamic recrystallization modeling and simulation of Inconel 718 nickel-based superalloy[J]. Journal of Netshape Forming Engineering, 2021, 13(1): 61-65. [24]Cao T S. Modeling ductile damage for complex loading paths[D]. Ecole Nationale Supérieure des Mines de Paris, 2013. |