[1]Qin H, Zhang H, Sun D, et al. Corrosion behavior of the friction-stir-welded joints of 2A14-T6 aluminum alloy[J]. International Journal of Minerals Metallurgy and Materials, 2015, 22(6): 627-638. [2]付 佳, 晋会锦, 吴素君, 等. 热处理对2A14铝合金组织和性能的影响[J]. 材料热处理学报, 2016, 37(1): 189-194. Fu Jia, Jin Huijin, Wu Sujun, et al. Effect of heat treatment on microstructure and properties of 2A14 aluminum alloy[J]. Transaction of Materials Heat Treatment, 2016, 37(1): 189-194. [3]郭伦文. 2A14铝合金热压缩变形流变行为研究[D]. 长沙: 中南大学, 2013. Guo Lunwen. Study of flow behavior 2A14 aluminum alloy during hot compression deformation[D]. Changsha: Central South University, 2013. [4]Wang S C, Starink M J. Two types of S phase precipitates in Al-Cu-Mg alloys[J]. Acta Materialia, 2007, 55(3): 933-941. [5]Eskin D G. Decomposition of supersaturated solid solutions in Al-Cu-Mg-Si alloys[J]. Journal of Materials Science, 2003, 38(2): 279-290. [6]Rakhmonov J, Liu K, Pan L, et al. Enhanced mechanical properties of high-temperature-resistant Al-Cu cast alloy by microalloying with Mg[J]. Journal of Alloys and Compounds, 2020, 827: 154305. [7]陈送义, 李际宇, 王习峰, 等. Cu含量对2A14铝合金显微组织和腐蚀性能的影响[J]. 湖南大学学报(自然科学版), 2018, 45(12): 29-37. Chen Songyi, Li Jiyu, Wang Xifeng, et al. Effect of Cu content on microstructure and corrosion properties of 2A14 aluminum alloy[J]. Journal of Hunan University(Natural Sciences), 2018, 45(12): 29-37. [8]Li F, Chen S, Chen K, et al. The role of Si on microstructure, mechanical and local corrosion behaviors of an Al-Cu-Mg-Si alloy with high Cu/Mg ratio[J]. Journal of Alloys and Compounds, 2020, 819: 152977. [9]Li S, Zhang J, Yang J, et al. Influence of Mg contents on aging precipitation behavior of Al-3.5Cu-xMg alloy[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 107-114. [10]Liu X Y, Wang Z P, Fu B G, et al. Effects of Mg content on the mechanical properties and corrosion resistance of Al-Cu-Mg-Ag alloy[J]. Journal of Alloys and Compounds, 2016, 685: 209-215. [11]Kim I, Song M, Kim J, et al. Effect of added Mg on the clustering and two-step aging behavior of Al-Cu alloys[J]. Materials Science and Engineering A, 2020, 798: 140123. [12]Gazizov M R, Dubina A V, Zhemchuzhnikova D A, et al. Effect of equal-channel angular pressing and aging on the microstructure and mechanical properties of an Al-Cu-Mg-Si alloy[J]. The Physics of Metals and Metallography, 2015, 116(7): 718-729. [13]Zhu A W, Starke E A. Strengthening effect of unshearable particles of finite size: A computer experimental study[J]. Acta Materialia, 1999, 47(11): 3263-3269. [14]Chen Z, Ren J, Yuan Z, et al. Enhanced strength-plasticity combination in an Al-Cu-Mg alloy—atomic scale microstructure regulation and strengthening mechanisms[J]. Materials Science and Engineering A, 2020, 787: 139447. [15]Robinson J S, Cudd R L, Tanner D A, et al. Quench sensitivity and tensile property inhomogeneity in 7010 forgings[J]. Journal of materials processing technology, 2001, 119(1): 261-267. [16]Chen S, Li F, Chen K, et al. Synergic effect of hot deformation temperature and pre-straining on ageing precipitates and mechanical property of 2014 Al alloy[J]. Materials Characterization, 2020, 167: 110510. [17]Srivatsan T S L D. Microstructure, tensile properties and fracture behaviour of an Al-Cu-Mg alloy 2124[J]. Journal of Materials Science, 1993(28): 3205-3213. [18]Ringer S P, Sofyan B T, Prasad K S, et al. Precipitation reactions in Al-4.0Cu-0.3Mg (mass fraction, %) alloy[J]. Acta Materialia, 2008, 56(9): 2147-2160. |