[1]Hensen G, Melfo W, Chen S, et al. Developing zinc coated boron steel: Balancing microcrack performance and corrosion protection[C]// Proceedings of 4th International Conference on Hot Sheet Metal Forming of High-Performance Steel. Lule, Sweden, 2013: 463-470. [2]Marder A R. The metallurgy of zinc-coated steel[J]. Progress in Materials Science, 2000, 45(3): 191-271. [3]Van Genderen M J, Verloop W C, Loiseaux J, et al. Zinc-coated boron steel, ZnX©: Direct hot forming for automotive applications[C]//Proceedings of 3rd International Conference on Hot Sheet Metal Forming of High-Performance Steel, 2011: 2-9. [4]Janik V, Beentjes P, Norman D, et al. Role of heating conditions on microcrack formation in zinc coated 22MnB5[C]//Association for Iron and Steel Technology. Materials Science and Technology Conference and Exhibition, 2014: 299-306. [5]Kang H, Cho L, Lee C, et al. Zn penetration in liquid metal embrittled TWIP steel[J]. Metallurgical and Materials Transactions A, 2016, 47(6): 2885-2905. [6]Wang K, Zhu B, Wang Z, et al. Successive phase and morphology evolution of galvannealed coating in hot stamping and diffusion modeling of α-Fe (Zn)/steel system considering the effect of Zn concentration[J]. Surface and Coatings Technology, 2019, 380: 125036. [7]Järvinen H, Honkanen M, Patnamsetty M, et al. Press hardening of zinc-coated boron steels: Role of steel composition in the development of phase structures within coating and interface regions[J]. Surface and Coatings Technology, 2018, 352: 378-391. [8]Song G M, Sloof W G. Effect of alloying element segregation on the work of adhesion of metallic coating on metallic substrate: Application to zinc coatings on steel substrates[J]. Surface and Coatings Technology, 2011, 205(19): 4632-4639. [9]Dong Z, Li M, Behnamian Y, et al. Effects of Si, Mn on the corrosion behavior of ferritic-martensitic steels in supercritical water (SCW) environments[J]. Corrosion Science, 2020, 166: 108432. [10]倪 雷, 刘丽艳, 郭亚洲, 等. 保温时间对镀锌B1500HS钢镀层组织和成分的影响[J]. 材料热处理学报, 2020, 41(10): 117-122. Ni Lei, Liu Liyan, Guo Yazhou, et al. Effect of holding time on microstructure and composition of galvanized coating of B1500HS steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(10): 117-122. [11]Park H, Jeong Y J, Lee K, et al. Correlation of interface microstructural features with the adhesive bonding strength of galvannealed interstitial-free steel[J]. Metals and Materials International, 2020, 27: 3250-3259. [12]袁训华, 张启富, 江社明. 热镀锌合金化工艺对镀层表面摩擦特性的影响[J]. 材料热处理学报, 2011, 32(6): 132-137. Yuan Xunhua, Zhang Qifu, Jiang Sheming. Effect of galvannealing parameters on friction characteristics of galvannealed coatings[J]. Transactions of Materials and Heat Treatment, 2011, 32(6): 132-137. [13]Park H, Jeong Y J, Lee K, et al. Effect of galvannealing temperature on coating microstructure evolution correlated to flaking degradation on galvannealed interstitial-free steel[J]. Surface and Coatings Technology, 2020, 404: 126446. [14]Gaderbauer W, Arndt M, Truglas T, et al. Effects of alloying elements on surface oxides of hot-dip galvanized press hardened steel[J]. Surface and Coatings Technology, 2020, 404: 126466. [15]Rheingans B, Mittemeijer E J. Modelling precipitation kinetics: Evaluation of the thermodynamics of nucleation and growth[J]. Calphad, 2015, 50: 49-58. |