[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Yeh J W. Alloy design strategies and future trends in high-entropy alloys[J]. Jom, 2013, 65(12): 1759-1771. [3]George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms[J]. Acta Materialia, 2020, 188: 435-474. [4]翟逸玥, 寇生中, 杨慧妮. AlxCrFeNiMn高熵合金的组织和性能[J]. 金属热处理, 2019, 44(7): 144-149. Zhai Yiyue, Kou Shengzhong, Yang Huini. Microstructure and properties of AlxCrFeNiMn high entropy alloys[J]. Heat Treatment of Metals, 2019, 44(7): 144-149. [5]Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. [6]Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158. [7]Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature, 2018, 563(7732): 546-550. [8]刘 亮, 张 越, 赵作福, 等. 热处理对CoCrFeNiMo高熵合金组织与硬度的影响[J]. 金属热处理, 2016, 41(8): 29-32. Liu Liang, Zhang Yue, Zhao Zuofu, et al. Effect of heat treatment on microstructure and hardness of CoCrFeNiMo high entropy alloy[J]. Heat Treatment of Metals, 2016, 41(8): 29-32. [9]张 越, 刘 亮, 商 剑. 退火温度对CoCrFeNiAl高熵合金组织与性能的影响[J]. 金属热处理, 2017, 42(9): 36-39. Zhang Yue, Liu Liang, Shang Jian. Effect of annealing temperature on microstructure and properties of CoCrFeNiAl high entropy alloy[J]. Heat Treatment of Metals, 2017, 42(9): 36-39. [10]Brechtl J, Chen S Y, Xie X, et al. Towards a greater understanding of serrated flows in an Al-containing high-entropy-based alloy[J]. International Journal of Plasticity, 2019, 115: 71-92. [11]Lu W, Liebscher C H, Dehm G, et al. Bidirectional transformation enables hierarchical nanolaminate dual-phase high-entropy alloys[J]. Advanced Materials, 2018, 30(44): 1804727. [12]Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys[J]. Nature, 2019, 574(7777): 223-227. [13]Youssef K M, Zaddach A J, Niu C, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures[J]. Materials Research Letters, 2014, 3(2): 95-99. [14]Sanchez J M, Vicario I, Albizuri J, et al. Phase prediction, microstructure and high hardness of novel light-weight high entropy alloys[J]. Journal of Materials Research and Technology, 2019, 8(1): 795-803. [15]Tseng K K, Yang Y C, Juan C C, et al. A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35[J]. Science China-Technological Sciences, 2018, 61(2): 184-188. [16]Chauhan P, Yebaji S, Nadakuduru V N, et al. Development of a novel light weight Al35Cr14Mg6Ti35V10 high entropy alloy using mechanical alloying and spark plasma sintering[J]. Journal of Alloys and Compounds, 2020, 820: 153367-153367. [17]Zhou Y J, Zhang Y, Wang Y L, et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties[J]. Applied Physics Letters, 2007, 90(18): 181904. [18]Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511. [19]Liu S, Gao M C, Liaw P K, et al. Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys[J]. Journal of Alloys and Compounds, 2015, 619: 610-615. [20]Huang X, Miao J, Luo A A. Lightweight AlCrTiV high-entropy alloys with dual-phase microstructure via microalloying[J]. Journal of Materials Science, 2018, 54(3): 2271-2277. [21]Maulik O, Kumar D, Kumar S, et al. Structural evolution of spark plasma sintered AlFeCuCrMgx(x=0, 0.5, 1, 1.7) high entropy alloys[J]. Intermetallics, 2016, 77: 46-56. [22]Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy[J]. Materials Letters, 2015, 142: 153-155. [23]Stepanov N D, Yurchenko N Y, Shaysultanov D G, et al. Effect of Al on structure and mechanical properties of AlxNbTiVZr (x=0, 0.5, 1, 1.5) high entropy alloys[J]. Materials Science and Technology, 2015, 31(10): 1184-1193. [24]Stepanov N D, Yurchenko N Y, Skibin D V, et al. Structure and mechanical properties of the AlCrxNbTiV (x=0, 0.5, 1, 1.5) high entropy alloys[J]. Journal of Alloys and Compounds, 2015, 652: 266-280. [25]Chen W, Tang Q H, Wang H, et al. Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy[J]. Materials Science and Technology, 2018, 34(11): 1309-1315. [26]Huang T D, Wu S Y, Jiang H, et al. Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(10): 1318-1325. [27]Menou E, Tancret F, Toda-caraballo I, et al. Computational design of light and strong high entropy alloys (HEA): Obtainment of an extremely high specific solid solution hardening[J]. Scripta Materialia, 2018, 156: 120-123. [28]Kang M, Lim K R, Won J W, et al. Al-Ti-containing lightweight high-entropy alloys for intermediate temperature applications[J]. Entropy (Basel), 2018, 20(5): 355-355. [29]Yang X, Chen S Y, Cotton J D, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium[J]. JOM, 2014, 66(10): 2009-2020. [30]Du X H, Wang R, Chen C, et al. Preparation of a light-weight MgCaAlLiCu high-entropy alloy[J]. Key Engineering Materials, 2017, 727: 132-135. [31]Li R, Gao J C, Fan K. Study to microstructure and mechanical properties of Mg containing high entropy alloys[J]. Materials Science Forum, 2010, 650: 265-271. [32]Qiu Y, Hu Y J, Taylor A, et al. A lightweight single-phase AlTiVCr compositionally complex alloy[J]. Acta Materialia, 2017, 123: 115-124. [33]Feng R, Gao M C, Zhang C, et al. Phase stability and transformation in a light-weight high-entropy alloy[J]. Acta Materialia, 2018, 146: 280-293. [34]Senkov O N, Senkova S V, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis[J]. Acta Materialia, 2013, 61(5): 1545-1557. [35]Chen Y L, Tsai C W, Juan C C, et al. Amorphization of equimolar alloys with HCP elements during mechanical alloying[J]. Journal of Alloys and Compounds, 2010, 506(1): 210-215. [36]Kanyane L R, Popoola A P I, Malatji N, et al. Synthesis and characterization of TixAlSixMoW light-weight high entropy alloys[J]. Materials Today: Proceedings, 2020, 28: 1231-1238. [37]Sanchez J, Vicario I, Albizuri J, et al. Compound formation and microstructure of as-cast high entropy aluminums[J]. Metals, 2018, 8(3): 167-167. [38]Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys[J]. Acta Materialia, 2013, 61(7): 2628-2638. [39]Hammond V H, Atwater M A, Darling K A, et al. Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying[J]. JOM, 2014, 66(10): 2021-2029. [40]Akira Takeuchi A I. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829. [41]Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2008, 10(6): 534-538. [42]Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase[J]. Intermetallics, 2013, 41: 96-103. [43]Zhang K, Fu Z. Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys[J]. Intermetallics, 2012, 22: 24-32. [44]Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics, 2012, 132(2/3): 233-238. [45]Zhang Y, Yang X, Liaw P K. Alloy design and properties optimization of high-entropy alloys[J]. Jom, 2012, 64(7): 830-838. [46]Dong Y, Lu Y, Jiang L, et al. Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys[J]. Intermetallics, 2014, 52: 105-109. [47]Leong Z Y, Huang Y H, Goodall R, et al. Electronegativity and enthalpy of mixing biplots for high entropy alloy solid solution prediction[J]. Materials Chemistry and Physics, 2018, 210: 259-268. [48]Ye Y F, Wang Q, Lu J, et al. Design of high entropy alloys: A single-parameter thermodynamic rule[J]. Scripta Materialia, 2015, 104: 53-55. [49]King D J M, Middleburgh S C, Mcgregor A G, et al. Predicting the formation and stability of single phase high-entropy alloys[J]. Acta Materialia, 2016, 104: 172-179. [50]Yao H W, Qiao J W, Gao M C, et al. NbTaV-(Ti, W) refractory high-entropy alloys: Experiments and modeling[J]. Materials Science and Engineering A, 2016, 674: 203-211. [51]Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects[J]. Materials Today, 2016, 19(6): 349-362. [52]Feng R, Gao M C, Lee C, et al. Design of light-weight high-entropy alloys[J]. Entropy, 2016, 18(9): 333. [53]George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515-534. |