[1]Hatano H, Kawano H, Okano S. 780 MPa class steel plate for architectural construction[J]. Selective AISE Steel Technology, 2004, 54(2): 105-109. [2]Hayashi T, Okatsu M, Kawabata F, et al. Method of manufacturing thick steel product of highstrength and high toughness having excellent weldability and minimal variation of structure and physical properties: US, 5989366[P]. 2003-08-13. [3]王文亮, 姚连登, 崔 强, 等. Mn-Mo-Nb-B系超低碳贝氏体钢控轧控冷工艺研究[C]//中国金属学会全国中厚钢板技术交流会. 中国金属学会, 2003: 250-257. [4]杨才福, 张永权. 新一代易焊接高强度高韧性船体钢的研究[J]. 钢铁, 2001, 36(11): 50-54. Yang Caifu, Zhang Yongquan. New generation of HSLA steels for naval structures[J]. Iron and Steel, 2001, 36(11): 50-54. [5]聂 燚, 董文龙, 赵运堂, 等. 高强度低碳贝氏体钢工艺和组织对性能的影响[J]. 北京科技大学学报, 2006, 28(8): 733-738. Nie Yi, Dong Wenlong, Zhao Yuntang, et al. Effects of process parameters and intermediate transformation structure on mechanical properties of a high strength low carbon bainitic steel[J]. Journal of University of Science and Technology Beijing, 2006, 28(8): 733-738. [6]王学敏, 杨善武, 尚成嘉, 等. 贝氏体组织细化的RPC工艺参数优化[J]. 北京科技大学学报, 2002, 24(2): 173-176. Wang Xuemin, Yang Shanwu, Shang Chengjia, et al. RPC processing optimizing to refine bainite[J]. Journal of University of Science and Technology Beijing, 2002, 24(2): 173-176. [7]Otani K, Muraoka H, Tsuruta S, et al. Development of ultraheavy-gauge (210 mm thick) 800 N/mm2 tensile strength plate steel for racks of jack-up rigs[J]. ISIJ International, 1993, 11(1): 714-719. [8]Lee K O, Hong S K, Kang Y K, et al. Grain refinement in bearing steels using a double-quenching heat-treatment process[J]. International Journal of Automotive Technology, 2009, 10(6): 697-702. [9]张 伟, 吴晓春, 闵永安. 奥氏体化温度对10Ni3MnCuAl钢贝氏体转变动力学的影响[J]. 材料热处理学报, 2008, 29(6): 78-81. Zhang Wei, Wu Xiaochun, Min Yongan. Effect of austenitizing temperature on bainite transformation kinetics in 10Ni3MnCuAl steel[J]. Transactions of Materials and Heat Treatment, 2008, 29(6): 78-81. [10]尚成嘉, 杨善武, 王学敏, 等. 低碳贝氏体钢的组织类型及其对性能的影响[J]. 钢铁, 2005, 40(4): 57-61. Shang Chengjia, Yang Shanwu, Wang Xuemin, et al. Microstructure and mechanical properties of low carbon bainitic steel[J]. Iron and Steel, 2005, 40(4): 57-61. [11]尚成嘉, 王学敏, 杨善武, 等. 高强度低碳贝氏体钢的工艺与组织细化[J]. 金属学报, 2003, 39(10): 1019-1024. Shang Chengjia, Wang Xuemin, Yang Shanwu, et al. Microstructure refinement of high strength low carbon bainitic steel[J]. Acta Metallurgica Sinica, 2003, 39(10): 1019-1024. [12]Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence[J]. Metallurgical and Materials Transactions A, 1994, 25(3): 563-573. [13]Furuhara T, Kikumoto K, Saito H, et al. Phasetransformation from fine-grained austenite[J]. ISIJ International, 2008, 48(8): 1038-1045. [14]Li Y, Crowther D N, Green M J W, et al. The effect of vanadium and niobium on the properties and microstructure of the intercritically reheated coarse grainedheat affected zone in low carbon microalloyed steels[J]. Transactions of the Iron and Steel Institute of Japan, 2001, 41(1): 46-55. [15]Dere E G, Sharma H, Petrov R H, et al. Effect of niobium and grain boundary density on the fire resistance of Fe-C-Mn steel[J]. Scripta Materialia, 2013, 68(8): 651-654. [16]Sarikaya M, Steinberg B G, Thomas G. Optimization of Fe/Cr/C base structural Steels for improved strength and toughness[J]. Metallurgical Transactions A, 1982, 13(12): 2227-2237. [17]Lambert-Perlade A, Sturel T, Gourgues A F, et al. Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel[J]. Metallurgical and Materials Transactions A, 2004, 35(3): 1039-1053. [18]缪成亮, 尚成嘉, 王学敏, 等. 高Nb X80管线钢焊接热影响区显微组织与韧性[J]. 金属学报, 2010, 46(5): 541-546. Miao Chengliang, Shang Chengjia, Wang Xuemin, et al. Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content[J]. Acta Metallurgica Sinica, 2010, 46(5): 541-546. [19]Guo Z, Lee C S, Morris J W. On coherent transformations in steel[J]. Acta Mater, 2004, 52: 5511-5518. |