[1]邓 锋, 胡 锋, 吴开明. 低合金高强度耐磨钢的发展与应用[J]. 金属材料与冶金工程, 2016, 44(2): 29-35. Deng Feng, Hu Feng, Wu Kaiming. Development and application of low-alloy high-strength wear-resistant steels[J]. Metal Materials and Metallurgy Engineering, 2016, 44(2): 29-35. [2]李文斌, 费 静, 曹忠孝, 等. 我国低合金高强度耐磨钢的生产现状及发展方向[J]. 机械工程材料, 2012, 36(2): 6-10. Li Wenbin, Fei Jing, Cao Zhongxiao, et al. Production status and development direction of wear resistant steel with low alloy and high strength in China[J]. Materials for Mechanical Engineering, 2012, 36(2): 6-10. [3]麻 衡, 周 平, 杜 军. 热处理工艺对NM500耐磨钢组织和性能的影响[J]. 金属热处理, 2015, 40(8): 159-163. Ma Heng, Zhou Ping, Du Jun. Effect of heat treatment on mechanical properties of NM500 steel[J]. Heat Treatment of Metals, 2015, 40(8): 159-163. [4]邓想涛, 王昭东, 张 逖, 等. HB450低合金超高强耐磨钢回火过程中的组织性能演变[J]. 钢铁, 2011, 46(5): 60-63. Deng Xiangtao, Wang Zhaodong, Zhang Ti, et al. Microstructure and properties evolution of HB450 ultra-high strength low-alloy abrasion resistant steel during tempering[J]. Iron and Steel, 2011, 46(5): 60-63. [5]彭 军, 牛 亮, 郭 永, 等. V、Ti对NM400钢耐磨性能的影响[J]. 金属热处理, 2016, 41(2): 19-23. Pneg Jun, Niu Liang, Guo Yong, et al. Effect of V and Ti on wear resistance of NM400 steel[J]. Heat Treatment of Metals, 2016, 41(2): 19-23. [6]杨瑞林, 李力军, 李玉成. 新型低合金高强韧性耐磨钢的研究[J]. 钢铁, 1999, 34(7): 43-47. Yang Ruilin, Li Lijun, Li Yucheng. Study on a new low alloy high strength and high toughness and wear resistance steel[J]. Iron and Steel, 1999, 34(7): 43-47. [7]王存宇, 时 捷, 刘 苏, 等. 淬火-配分-回火工艺处理钢的三体冲击磨损性能研究[J]. 材料研究学报, 2009, 23(3): 305-310. Wang Cunyu, Shi Jie, Liu Su, et al. Study on three-body impact-abrasion of steel treated by quenching-partitioning-tempering process[J]. Chinese Journal of Materials Research, 2009, 23(3): 305-310. [8]Xu L J, Xing J D, Wei S Z, et al. Study on relative wear resistance and wear stability of high-speed steel with high vanadium content[J]. Wear, 2007, 262: 253-261. [9]梁高飞, 许振明, 李建国, 等. 抗磨钢的最新进展[J]. 特殊钢, 2002(4): 1-7. Liang Gaofei, Xu Zenming, Li Jianguo, et al. Recent development of wear resistant steel[J]. Special Steel, 2002(4): 1-7. [10]梁小凯, 孙新军, 雍岐龙, 等. TiC颗粒强化型马氏体耐磨钢的性能研究[J]. 钢铁钒钛, 2017, 38(1): 48-53. Liang Xiaokai, Sun Xinjun, Yong Qilong, et al. Study on performance of TiC particle reinforced martensite wear-resistant steel[J]. Iron Steel Vanadium Titanium, 2017, 38(1): 48-53. [11]许 帅, 孙新军, 梁小凯, 等. 热轧变形量对高钛耐磨钢组织与力学性能的影响[J]. 金属学报, 2020, 56(12): 1581-1591. Xu Suai, Sun Xinjun, Liang Xiaokai, et al. Effect of hot rolling deformation on microstructure and mechanical properties of a high-Ti wear-resistant steel[J]. Acta Metallurgica Sinica, 2020, 56(12): 1581-1591. [12]王 川, 李新宇, 于 涛. 离线淬火工艺对NM400耐磨钢组织与性能的影响[J]. 山东冶金, 2020, 42(4): 43-45. Wang Chuan, Li Xinyu, Yu Tao. Effect of off-line quenching process on microstructure and properties of NM400 wear-resistant steel[J]. Shandong Metallurgy, 2020, 42(4): 43-45. [13]徐 慧, 李天生. 回火温度对Nb微合金化NM500钢组织和性能的影响[J]. 金属热处理, 2020, 45(9): 116-120. Xu Hui, Li Tiansheng. Effect of tempering temperature on microstructure and properties of Nb microalloyed NM500 steel[J]. Heat Treatment of Metals, 2020, 45(9): 116-120. [14]邓 杰, 孙新军, 张 涛, 等. 冷却速率对中锰马氏体耐磨钢微观结构及硬度的影响[J]. 材料导报, 2020, 34(10): 10126-10131. Deng Jie, Sun Xinjun, Zhang Tao, et al. Effect of cooling rate on microstructure and hardness of medium manganese martensitic wear-resistant steel[J]. Materials Review, 2020, 34(10): 10126-10131. [15]Du G, Liu F, Li J B. Evolution of microstructures and divorced eutectic TiC formed during solidification of the wear-resistant steel[J]. Materials Letters, 2020, 265: 127406. [16]Haiko O, Valtonen k, Kaijalainen A, et al. Effect of tempering on the impact-abrasive and abrasive wear resistance of ultra-high strength steels[J]. Wear, 2019, 440-441: 203098. [17]Dong C, Wu H B, Wang X T. Effect of cooling rate on microstructure, hardness, and residual stress of 0.28C-0.22Ti wear-resistant steel[J]. Journal of Iron and Steel Research International, 2019, 26(8): 866-874. [18]Xue H, Peng W J, Yu L, et al. Effect of hardenability on microstructure and property of low alloy abrasion-resistant steel[J]. Materials Science and Engineering A, 2020, 793: 139901. [19]Rendón J, Olsson M. Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods[J]. Wear, 2009, 267(11): 2055-2061. [20]孙新军, 刘罗锦, 梁小凯, 等. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672. Sun Xinjun, Liu Luojin, Liang Xiaokai, et al. TiC precipitation behavior and its effect on abrasion resistance of high titanium wear-resistant steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 661-672. [21]王明娣, 刘东权, 武会宾. 淬火工艺对低合金耐磨钢组织与力学性能的影响[J]. 金属热处理, 2018, 43(8): 156-161. Wang Mingdi, Liu Dongquan, Wu Huibin. Influence of quenching on microstructure and mechanical properties of low alloy wear-resistant steel[J]. Heat Treatment of Metals, 2018, 43(8): 156-161. [22]邓想涛. 低合金耐磨钢组织性能控制及磨损机理研究[D]. 沈阳: 东北大学, 2014. Deng Xiangtao. Microstructure and mechanical property control and wear mechanism study for low-alloy abrasion resistant steel[D]. Shenyang: Northeastern University, 2014. [23]曹 艺, 王昭东, 邓想涛, 等. 低合金耐磨钢回火过程中的碳化物析出[J]. 材料热处理学报, 2018, 39(4): 113-120. Cao Yi, Wang Zhaodong, Deng Xiangtao, et al. Carbide precipitation during tempering of low alloy wear resistant steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(4): 113-120. [24]张 可, 孙新军, 雍岐龙, 等. 回火时间对高Ti微合金化淬火马氏体钢组织及力学性能的影响[J]. 金属学报, 2015, 51(5): 553-560. Zhang Ke, Sun Xinjun, Yong Qilong, et al. Effect of tempering time on microstructure and mechanical properties of high Ti microalloyed quenched martensitic steel[J]. Acta Metallurgica Sinica, 2015, 51(5): 553-560. [25]Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ International, 2004, 44(11): 1945-1951. [26]Kostryzhev A G, Killmore C R, Yu D, et al. Martensitic wear resistant steels alloyed with titanium[J]. Wear, 2019, 446-447: 203203. |