[1]袁傲明, 李晶琨, 高晓丹, 等. 冷轧与时效工艺对2205双相不锈钢σ相析出的影响[J]. 金属热处理, 2021, 46(10): 26-30. Yuan Aoming, Li Jingkun, Gao Xiaodan, et al. Effect of cold rolling and aging process on σ phase precipitation of 2205 duplex stainless steel[J]. Heat Treatment of Metals, 2021, 46(10): 26-30. [2]高 娃, 罗建民, 杨建君. 双相不锈钢的研究进展及其应用[J]. 兵器材料科学与工程, 2005, 28(3): 61-64. Gao Wa, Luo Jianmin, Yang Jianjun. Research progress and application of duplex stainless steel[J]. Ordnance Material Science and Engineering, 2005, 28(3): 61-64. [3]Choi J Y, Lee J, Lee K, et al. Effects of the strain rate on the tensile properties of a TRIP-aided duplex stainless steel[J]. Materials Science and Engineering A, 2016, 666: 280-287. [4]丰 涵, 周晓玉, 刘 虎, 等. 特超级双相不锈钢的发展现状及趋势[J]. 钢铁研究学报, 2015, 27(4): 1-5. Feng Han, Zhou Xiaoyu, Liu Hu, et al. Development and trend of hyper duplex stainless steels[J]. Journal of Iron and Steel Research, 2015, 27(4): 1-5. [5]王小勇, 黄乐庆, 王海宝, 等. 固溶处理对双相不锈钢组织与性能的影响[J]. 金属热处理, 2018, 43(5): 101-105. Wang Xiaoyong, Huang Leqing, Wang Haibao, et al. Influence of solution treatment on microstructure and properties of duplex stainless steel[J]. Heat Treatment of Metals, 2018, 43(5): 101-105. [6]李德强, 叶其斌, 周 成, 等. 含Nb-Ti低碳钢的析出与细晶强化效应研究[J]. 鞍钢技术, 2012(4): 21-25. Li Deqiang, Ye Qibin, Zhou Cheng, et al. Study on precipitation and fine grain strengthening effects of low carbon steel with Nb-Ti[J]. Angang Technology, 2012(4): 21-25. [7]赵 杰, 徐海峰, 时 捷, 等. 细晶强化和位错强化对中锰马氏体钢的强化作用[J]. 钢铁, 2012, 47(8): 57-61. Zhao Jie, Xu Haifeng, Shi Jie, et al. Effect of grain refinement strengthening and dislocation strengthening on strength of medium manganese martensitic steels [J]. Iron and Steel, 2012, 47(8): 57-61. [8]Keichel J, Foct J, Gottstein G. Deformation and annealing behavior of nitrogen alloyed duplex stainless steels. Part II: Annealing[J]. Transactions of the Iron and Steel Institute of Japan, 2003, 43(11): 1781-1787. [9]Keichel J, Foct J, Gottstein G. Deformation and annealing behavior of nitrogen alloyed duplex stainless steels. Part I: Rolling[J]. ISIJ International, 2003, 43(11): 1788-1794. [10]李华冠. 新型铝锂合金的热处理工艺及淬火态成形性能研究[D]. 南京: 南京航空航天大学, 2013. Li Huaguan. Heat treatment process and quenched state forming properties of a new aluminum-lithium alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. [11]Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14501-14505. [12]Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 7197-7201. [13]Choi J Y, Ji J H, Hwang S W, et al. Effects of nitrogen content on Trip of Fe-20Cr-5Mn-xN duplex stainless steel[J]. Materials Science and Engineering A, 2012, 534: 673-680. [14]吴 玖. 双相不锈钢[M]. 北京: 冶金工业出版社, 1999. [15]Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scripta Materialia, 2017, 126: 63-67. [16]Ma Evan, Zhu Ting. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals[J]. Materials Today, 2017, 20(6): 323-331. [17]Li G, Morinaka S, Kawabata M, et al. Improvement of strength with maintaining ductility of harmonic structure pure copper by cold rolling and annealing process[J]. Procedia Manufacturing, 2018, 15: 1641-1648. [18]Podder A S, Bhadeshia H. Thermal stability of austenite retained in bainitic steels[J]. Materials Science and Engineering A, 2010, 527(7/8): 2121-2128. [19]Schwartz A J, Kumar M, Adams B L, et al. Electron Backscatter Diffraction in Materials Science[M]. Berlin: Springer-Verlag, 2000. |