[1]杨延辉, 王毛球, 陈敬超, 等. 高温渗碳齿轮钢的研究进展[J]. 特殊钢, 2013, 34(1): 22-24. Yang Yanhui, Wang Maoqiu, Chen Jingchao, et al. Research progress in gear steels for high temperature carburization[J]. Special Steel, 2013, 34(1): 22-24. [2]Yang Yanhui, Wang Maoqiu, Chen Jingchao, et al. Microstructure and mechanical properties of gear steels after high temperature carburization[J]. Journal of Iron and Steel Research, International, 2013, 20(12): 140-145. [3]赵文军, 刘国强, 王金栋, 等. 20Cr2Ni4A齿轮钢高温渗碳工艺[J]. 金属热处理, 2015, 40(12): 142-145. Zhao Wenjun, Liu Guoqiang, Wang Jindong, et al. High temperature carburizing process of 20Cr2Ni4A gear steel[J]. Heat Treatment of Metals, 2015, 40(12): 142-145. [4]田 勇, 安小雪, 王昭东, 等. 12Cr2Ni4A钢高温真空低压脉冲渗碳工艺[J]. 东北大学学报(自然科学版), 2020, 41(9): 1251-1256. Tian Yong, An Xiaoxue, Wang Zhaodong, et al. High temperature vacuum low-pressure pulse carburizing process of 12Cr2Ni4A steel[J]. Journal of Northeastern University(Natural Science), 2020, 41(9): 1251-1256. [5]赵振业. 航空高性能齿轮钢的研究与发展[J]. 航空材料学报, 2000, 20(3): 148-157. Zhao Zhenye. Development of higher-performance aeronautical gear steel[J]. Journal of Aeronautical Materials, 2000, 20(3): 148-157. [6]Krantz T, Tufts B. Pitting and bending fatigue evaluations of a new case-carburized gear steel[C]//ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2007: 863-869. [7]黄 斌, 朱洪武, 杨 忠, 等. 渗碳温度对22Si2MnCrNi2MoA钢渗碳层的影响[J]. 材料热处理学报, 2013, 34(7): 136-141. Huang Bin, Zhu Hongwu, Yang Zhong, et al. Influence of carburizing temperature on microstructure and properties of carburized layers of a 22Si2MnCrNi2MoA steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(7): 136-141. [8]黄 帅, 张国强, 王毛球, 等. 不同渗碳层深度下重载齿轮钢的疲劳性能[J]. 钢铁研究学报, 2012, 24(4): 34-38. Huang Shuai, Zhang Guoqiang, Wang Maoqiu, et al. Fatigue properties of heavy-duty gear steel with different carburized depth[J]. Journal of Iron and Steel Research, 2012, 24(4): 34-38. [9]王 斌, 何燕萍, 王昊杰, 等. 航空齿轮钢16Cr3NiWMoVNbE的真空低压渗碳[J]. 材料研究学报, 2020, 34(1): 35-42. Wang Bin, He Yanping, Wang Haojie, et al. Vacuum low-pressure carburization of gear steel 16Cr3NiWMoVNbE for aviation[J]. Chinese Journal of Materials Research, 2020, 34(1): 35-42. [10]An Xiaoxue, Tian Yong, Wang Bin, et al. Prediction of the formation of carbide network on grain boundaries in carburizing of 18CrNiMo7-6 steel alloys[J]. Surface and Coatings Technology, 2021, 421: 127348. [11]王志新, 施建军, 梅俊歌, 等. 20CrNi2Mo钢真空渗碳工艺及数值模拟[J]. 金属热处理, 2017, 42(11): 117-122. Wang Zhixin, Shi Jianjun, Mei Junge, et al. Numerical simulation on vacuum carburization of 20CrNi2Mo steel[J]. Heat Treatment of Metals, 2017, 42(11): 117-122. [12]Zajusz M, Tkacz-S' K, Danielewski M. Modeling of vacuum pulse carburizing of steel[J]. Surface and Coatings Technology, 2014, 258: 646-651. [13]赵振业. 超高强度钢中二次硬化现象研究[J]. 航空材料学报, 2002, 22(4): 46-55. Zhao Zhenye. Studing status on the secondary hardening phenomenon in ultra-high strength steels[J]. Journal of Aeronautical Materials, 2002, 22(4): 46-55. [14]杨雨松, 王 斌. 航空轴承钢M50NiL真空低压渗碳热处理工艺研究[J]. 轧钢, 2020, 37(5): 35-38, 46. Yang Yusong, Wang Bin. Investigation on vacuum low-pressure carburizing heat treatment process of bearing steel M50NiL for aviation engine[J]. Steel Rolling, 2020, 37(5): 35-38, 46. [15]王 会, 王昊杰, 贾 涛, 等. 航空轴承钢的真空低压渗碳工艺[J]. 金属热处理, 2020, 45(1): 1-5. Wang Hui, Wang Haojie, Jia Tao, et al. Low pressure carburizing process for aviation bearing steel[J]. Heat Treatment of Metals, 2020, 45(1): 1-5. |