[1]Shan L, Wang Y, Li J, et al. Improving tribological performance of CrN coatings in seawater by structure design[J]. Tribology International, 2015, 82: 78-88. [2]Ruden A, Restrepo-Parra E, Paladines A U, et al. Corrosion resistance of CrN thin films produced by dc magnetron sputtering[J]. Applied Surface Science, 2013, 270: 150-156. [3]Chang Z K, Wan X S, Pei Z L, et al. Microstructure and mechanical properties of CrN coating deposited by arc ion plating on Ti6Al4V substrate[J]. Surface and Coatings Technology, 2011, 205(19): 4690-4696. [4]Nouveau C, Tlili B, Aknouche H, et al. Comparison of CrAlN layers obtained with one (CrAl) or two targets (Cr and Al) by magnetron sputtering[J]. Thin Solid Films, 2012, 520(7): 2932-2937. [5]李子骏, 吴志威, 高 宋, 等. Cr-Si-C-N系统中含Cr氮化物薄膜的结构及其摩擦学特性研究进展[J]. 润滑与密封, 2015, 40(9): 128-136, 156. Li Zijun, Wu Zhiwei, Gao Song, et al. Progress in microstructure and tribological properties of CrN-based films in the Cr-Si-C-N system[J]. Lubrication Engineering, 2015, 40(9): 128-136, 156. [6]王浩琦, 覃礼钊, 官家建, 等. 磁过滤阴极弧法制备CrCN薄膜结构与组分研究[J]. 表面技术, 2017, 46(1): 9-14. Wang Haoqi, Qin Lizhao, Guan Jiajian, et al. Structure and composition investigation of CrCN films prepared by filtered cathodic vacuum arc technique[J]. Surface Technology, 2017, 46(1): 9-14. [7]范国栋, 施文彦, 程欢欢, 等. 氮气流量对CrCN镀层摩擦学性能的影响[J]. 表面技术, 2018, 47(2): 77-82. Fan Guodong, Shi Wenyan, Cheng Huanhuan, et al. Effects of nitrogen flow on tribological properties of CrCN coatings[J]. Surface Technology, 2018, 47(2): 77-82. [8]Guan J J, Wang H Q, Qin L Z, et al. Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017, 397: 86-91. [9]Tong C Y, Lee J W, Kuo C C, et al. Effects of carbon content on the microstructure and mechanical property of cathodic arc evaporation deposited CrCN thin films[J]. Surface and Coatings Technology, 2013, 231: 482-486. [10]Warcholinski B, Gilewicz A, Ratajski J, et al. An analysis of macroparticle-related defects on CrCN and CrN coatings in dependence of the substrate bias voltage[J]. Vacuum, 2012, 86(9): 1235-1239. [11]王春婷, 叶育伟, 胡建民, 等. CrCN涂层在不同沉积温度下的摩擦学性能研究[J]. 有色金属科学与工程, 2015, 6(2): 42-47. Wang Chunting, Ye Yuwei, Hu Jianmin, et al. Tribological performances of CrCN coatings under different deposition temperatures[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 42-47. [12]Wang Y, Zhang J, Zhou S, et al. Improvement in thetribocorrosion performance of CrCN coating by multilayered design for marine protective application[J]. Applied Surface Science, 2020, 528: 147061. [13]Huang S H, Tong C Y, Hsieh T E, et al. Microstructure and mechanical properties evaluation of cathodic arc deposited CrCN/ZrCN multilayer coatings[J]. Journal of Alloys and Compounds, 2019, 803: 1005-1015. [14]胡鹏飞, 蒋百灵, 李洪涛. 碳靶电流对CrCN镀层摩擦系数的影响[J]. 功能材料, 2011, 42(1): 175-177, 181. Hu Pengfei, Jiang Bailing, Li Hongtao. Influence of carbon target current on friction coefficient of CrCN coating[J]. Journal of Functional Materials, 2011, 42(1): 175-177, 181. [15]Zhang J, Su X, Shan L, et al. Preparation andtribocorrosion performance of CrCN coatings in artificial seawater on different substrates with different bias voltages[J]. Ceramics International, 2019, 45(8): 9901-9911. [16]Raza H A, Shafiq M, Naeem M, et al. Cathodic cage plasma pre-treatment of TiN-coated AISI-304 stainless steel for enhancement of mechanical strength and wear resistance[J]. Journal of Materials Engineering and Performance, 2019, 28(1): 20-32. |