[1]AlMangour B, Yang J M. Understanding the deformation behavior of 17-4 precipitate hardenable stainless steel produced by direct metal laser sintering using micropillar compression and TEM[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/4): 119-126. [2]McWilliams B, Pramanik B, Kudzal A, et al. High strain rate compressive deformation behavior of an additively manufactured stainless steel[J]. Additive Manufacturing, 2018, 24: 432-439. [3]Pasebani S, Ghayoor M, Badwe S, et al. Effects of atomizing media and post processing on mechanical properties of 17-4PH stainless steel manufactured via selective laser melting[J]. Additive Manufacturing, 2018, 22: 127-137. [4]Liu M C X, Ma F, Chang G R, et al. Experimental investigation of failure behavior of the cracked 17-4PH steel blades in a top gas energy recovery turbine[J]. Engineering Failure Analysis, 2019, 105: 545-554. [5]Ding Y P, Yao J H, Liu R, et al. Effects of surface treatment on thecavitation erosion-corrosion performance of 17-4PH stainless steel in sodium chloride solution[J]. Journal of Materials Engineering and Performance, 2020, 29(4): 2687-2696. [6]Otto J L, Penyaz M, Schmiedt-Kalenborn A, et al. Effect of phase formation due to holding time of vacuum brazed AISI 304L/NiCrSiB joints on corrosion fatigue properties[J]. Journal of Materials Research and Technology, 2020, 9(5): 10550-10558. [7]Chen W W, Gao W S. Sol-enhanced electroplating of nanostructured Ni-TiO2 composite coatings—The effects of sol concentration on the mechanical and corrosion properties[J]. Electrochimica Acta, 2010, 55(22): 6865-6871. [8]Liu Z, Dong Y C, Chu Z H, et al. Corrosion behavior of plasma sprayed ceramic and metallic coatings on carbon steel in simulatedseawater[J]. Materials and Design, 2013, 52: 630-637. [9]Er D, Azar G T P, Kazmanli K, et al. The corrosion protection ability of TiAlN coatings produced with CA-PVD under superimposed pulse bias[J]. Surface and Coatings Technology, 2018, 346: 1-8. [10]Zhang J, Xue Q, Li S X. Microstructure and corrosion behavior of TiC/Ti(CN)/TiN multilayer CVD coatings on high strength steels[J]. Applied Surface Science, 2013, 280: 626-63. [11]Jiang Y Q, Li J, Juan Y F, et al. Evolution in microstructure and corrosion behavior of AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding[J]. Journal of Alloys and Compounds, 2019, 775: 1-14. [12]Peng Y B, Zhang W, Li T C, et al. Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105044. [13]Xiang K, Chai L J, Wang Y Y, et al. Microstructural characteristics and hardness of CoNiTi medium-entropy alloy coating on pure Ti substrate prepared by pulsed laser cladding[J]. Journal of Alloys and Compounds, 2020, 849: 156704. [14]Farahmand P, Kovacevic R. Corrosion and wear behavior of laser cladded Ni-WC coatings[J]. Surface and Coatings Technology, 2015, 276: 121-135. [15]Zhou R, Chen G, Liu B, et al. Microstructures and wearbehaviour of (FeCoCrNi)1-x(WC)x high entropy alloy composites[J]. International Journal of Refractory Metals and Hard Materials, 2018, 75: 56-62. [16]Li Y X, Zhang P F, Bai P K, et al. Microstructure and properties of Ti/TiBCN coating on 7075 aluminum alloy by laser cladding[J]. Surface and Coatings Technology, 2018, 334: 142-149. [17]Zhang P, Liu Z. Physical-mechanical and electrochemical corrosion behaviors of additively manufactured Cr-Ni-based stainless steel formed by laser cladding[J]. Materials and Design, 2016, 100: 254-262. [18]Huang G K, Qu L D, Lu Y Z, et al. Corrosion resistance improvement of 45 steel by Fe-based amorphous coating[J]. Vacuum, 2018, 153: 39-42. [19]Aliyu A, Rekha M Y, Srivastava C. Microstructure-electrochemical property correlation in electrodeposited CuFeNiCoCr high-entropy alloy-graphene oxide composite coatings[J]. Philosophical Magazine, 2019, 99(6): 718-735. [20]Zhao Y H, Sun J, Li J F. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling[J]. Applied Surface Science, 2014, 321: 387-395. [21]George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515-534. [22]Ma Y, Wang Q, Jiang B B, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions[J]. Acta Materialia, 2018, 147: 213-225. [23]Guo Y X, Liu Q B. MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding[J]. Intermetallics, 2018, 102: 78-87. [24]Thomas S L, Patala S. Vacancy diffusion in multi-principal element alloys: The role of chemical disorder in the ordered lattice[J]. Acta Materialia, 2020, 196: 144-153 [25]Laplanche G, Gadaud P, Horst O, et al. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy[J]. Journal of Alloys and Compounds, 2015, 623: 348-353. [26]Ye Q F, Feng K, Li Z G, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating[J]. Applied Surface Science, 2017, 396: 1420-1426. [27]Qiu X W, Wu M J, Liu C G, et al. Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids[J]. Journal of Alloys and Compounds, 2017, 708: 353-357. [28]王 府. 电沉积制备Co-Mo复合镀层及其耐腐蚀性能研究[D]. 杨凌: 西北农林科技大学, 2021. Wang Fu. Investigation on preparation and corrosion resistance of Co-Mo composite coating by electrodeposition[D]. Yangling: Northwest A&F University, 2021. [29]Shi Y, Ni C, Liu J, et al. Microstructure and properties of laser clad high-entropy alloy coating onaluminium[J]. Materials Science and Technology, 2018, 34(10): 1239-1245. [30]Lazar A M, Yespica W P, Marcelin S, et al. Corrosion protection of 304L stainless steel by chemical vapor deposited alumina coatings[J]. Corrosion Science, 2014, 81: 125-131. |