[1]王爱香, 高金柱, 顾 敏. 新型高合金齿轮渗碳钢17CrNiMo6的热处理[J]. 金属热处理, 2010, 35(10): 82-86. Wang Aixiang, Gao Jinzhu, Gu Min. Heat treatment of new type high alloy carburizing gear steel 17CrNiMo6[J]. Heat Treatment of Metals, 2010, 35(10): 82-86. [2]Wang Min, Wei Xiao, Peng Gan, et al. Study on inclusions distribution and cyclic fatigue performance of gear steel 18CrNiMo7-6 forging[J]. Metals, 2020, 10(2): 201-215. [3]罗 成. 高强度汽车渗碳齿轮钢的发展及应用[J]. 炼钢, 2006, 22(5): 56-59. Luo Cheng. Development and application of high strength automotive carburizing gear steels[J]. Steelmaking, 2006, 22(5): 56-59. [4]刘金鑫, 冯桂萍, 程丽杰, 等. 正火冷却速度对18CrNiMo7-6齿轮钢组织和硬度的影响[J]. 特殊钢, 2013, 34(1): 66-68. Liu Jinxin, Feng Guiping, Cheng Lijie, et al. Effect of normalized cooling rate on structure and hardness of gear steel 18CrNiMo7-6[J]. Special Steel, 2013, 34(1): 66-68. [5]何 维. 抑制低碳钢贝氏体转变的生产实践[J]. 柳钢科技, 2019(4): 33-36. He Wei. Production practice of inhibiting bainite transformation of low carbon steel[J]. Science and Technology of Liuzhou Steel, 2019, (4): 33-36. [6]杨 明, 肖冬玲. 热处理工艺对齿轮钢组织与性能的影响[J]. 铸造技术, 2015, 36(1): 102-104. Yang Ming, Xiao Dongling. Effect of heat treatment process on microstructure and properties of gear steel[J]. Foundry Technology, 2015, 36(1): 102-104. [7]Zarandi F, Yue S. The effect of boron on hot ductility of Nb-microalloyed steels[J]. ISIJ International, 2006, 46(4): 591-598. [8]Shang Chenjia, Nie Yi, He Xinlai, et al. Intermediate transformation structure and mechanical properties of high strength low carbon bainitic steel[J]. Iron and Steel, 2005, 40(7): 440-444. [9]Pichler A, Stiaszny P. TRIP steels with reduced silicon content[J]. Steel Research, 1999, 70(11): 457-465. [10]Kong Junhua, Xie Changsheng. Effect of molybdenum on continuous cooling bainite transformation of low-carbon microalloyed steel[J]. Materials and Design, 2006, 27(10): 1169-1173. [11]Chen Xiaowei, Qiao Guiying, Han Xiulin, et al. Effects of Mo, Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels[J]. Materials and Design, 2014, 53(1): 888-901. [12]张延玲, 刘海英, 阮小江, 等. 中低碳齿轮钢中合金元素的偏析行为及其对带状组织的影响[J]. 北京科技大学学报, 2009, 31(S1): 199-206. Zhang Yanling, Liu Haiying, Ruan Xiaojiang, et al. Microsegregation behaviors of alloy elements and their effects on the formation of banded structure in pinion steels[J]. Journal of University of Science and Technology Beijing, 2009, 31(S1): 199-206. [13]Offerman S E, Dijk N V, Rekveldt M T, et al. Ferrite/pearlite band formation in hot rolled medium carbon steel[J]. Materials Science and Technology, 2002, 18(3): 297-303. [14]刘云旭. 低碳合金钢中带状组织的成因、危害和消除[J]. 金属热处理, 2000, 25(12): 1-3. Liu Yunxu. Reason of formation, harmful effect and removal of band structure in low carbon alloy steel[J]. Heat Treatment of Metals, 2000, 25(12): 1-3. [15]宋立秋, 赵安银, 谢 海. 16Mn钢锰含量的偏析及其对带状组织的影响[J]. 攀钢技术, 2000, 23(5): 10-13. Song Liqiu, Zhao Anyin, Xie Hai. Segregation of manganese content in 16Mn steel and effect on band structure[J]. Panzhihua Steel Technology, 2000, 23(5): 10-13. [16]史 远, 戴观文, 黄艳新, 等. 20MnCr5齿轮钢连续冷却过程中的组织变化[J]. 金属热处理, 2017, 42(9): 128-131. Shi Yuan, Dai Guanwen, Huang Yanxin, et al. Microstructure evolution of 20MnCr5 gear steel during continuous cooling transformation[J]. Heat Treatment of Metals, 2017, 42(9): 128-131. |