[1]Fridlender I N. Aluminum alloys in aircraft in the periods of 1970-2000 and 2001-2015[J]. Metal Science and Heat Treatment, 2001, 43(1/2): 5-9. [2]杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005, 19(2): 76-80. Yang Shoujie, Dai Shenglong. A glimpse at the development and application of aluminum alloys in aviation industry[J]. Materials Review, 2005, 19(2): 76-80. [3]张君尧. 我国铝材应用的进展及今后应用(1)[J]. 轻金属, 1994, 31(2): 58-62. [4]辛仕伟. Al-Cu-Mg-Ag高强耐热铸造铝合金成分与热处理工艺的研究[D]. 北京: 机械科学研究总院, 2018. Xin Shiwei. Study on the composition and heat treatment process of Al-Cu-Mg-Ag high strength and heat resistant cast aluminum alloy[D]. Beijing: China Academy of Machinery Science and Technology, 2018. [5]王 建, 王杰芳, 郭巧能, 等. Al-Cu-Mg-Ag合金热处理工艺的研究进展[J]. 金属热处理, 2015, 40(3): 163-168. Wang Jian, Wang Jiefang, Guo Qiaoneng, et al. Research progress of heat treatment process of Al-Cu-Mg-Ag alloys[J]. Heat Treatment of Metals, 2015, 40(3): 163-168. [6]Wang S B, Chen J H, Yin M J, et al. Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in AlCuMg alloys[J]. Acta Materialia, 2012, 60(19): 6573-6580. [7]胡 婷, 尹登峰, 余鑫祥, 等. 新型Al-Cu-Mg-Ce合金的热处理工艺及组织演化[J]. 金属热处理, 2017, 42(7): 95-101. Hu Ting, Yin Dengfeng, Yu Xinxiang, et al. Heat treatment and microstructure evolution of a new Al-Cu-Mg-Ce alloy[J]. Heat Treatment of Metals, 2017, 42(7): 95-101. [8]张 帆. 不同Cu、Mg元素含量及Cu/Mg对Al-Cu-Mg-Ag合金力学性能的影响[D]. 郑州: 郑州大学, 2014. Zhang Fan. Effects of different content of Cu、Mg and Cu/Mg on the mechanical properties of Al-Cu-Mg-Ag alloy[D]. Zhengzhou: Zhengzhou University, 2014. [9]肖代红, 杨太华, 黄伯云. Cu和Mg对Al-Cu-Mg-Ag-Mn合金的组织与力学性能的影响[J]. 特种铸造及有色合金, 2007(6): 413-415. Xiao Daihong, Yang Taihua, Huang Boyun. Effects of Cu and Mg on microstructure and mechanical properties of Al-Ag-Mn alloy[J]. Special Casting and Nonferrous Alloys, 2007(6): 413-415. [10]李春梅, 蒋显全, 程南璞, 等. 铝合金细化相Al3(Zr, Sc)的能量、弹性与界面性质的第一性原理研究(英文)[J]. 稀有金属材料与工程, 2020, 49(8): 2557-2566. Li Chunmei, Jiang Xianquan, Cheng Nanpu, et al. First-principles investigation on formation energy, elasticity and interfacial properties of refining phase Al3(Zr, Sc) in Al alloys[J]. Rare Metal Materials and Engineering, 2020, 49(8): 2557-2566. [11]张思平. 含Sc铝合金的应用研究新进展与前景展望[J]. 铝加工, 2019, 247(2): 4-9. Zhang Siping. Research development and prospect for application of Sc-containing aluminum alloy[J]. Aluminium Fabrication, 2019, 247(2): 4-9. [12]孔德斌, 李彩琼. 高Cu含量Al-Cu-Li-Sc合金中W(Al8Cu4Sc)相的形成机制[J]. 金属热处理, 2020, 45(2): 61-65. Kong Debin, Li Caiqiong. Formation mechanism of W(Al8Cu4Sc) phase in Al-Cu-Li-Sc alloy with high Cu content[J]. Heat Treatment of Metals, 2020, 45(2): 61-65. [13]廖思敏, 苏玉长, 海丰龙. Al-Cu-Mg-Mn-Sc-Zr合金均匀化过程中的结构转变[J]. 金属热处理, 2020, 45(4): 55-59. Liao Simin, Su Yuchang, Hai Fenglong. Microstructural evolution of Al-Cu-Mg-Mn-Sc-Zr alloy during homogenization[J]. Heat Treatment of Metals, 2020, 45(4): 55-59. [14]Easton M A, Stjohn D H. Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—A review of the literature[J]. Metallurgical and Materials Transactions A, 1999, 30(6): 1613-1623. [15]Easton M A, Stjohn D H. Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm[J]. Metallurgical & Materials Transactions A, 1999, 30(6): 1625-1633. [16]Khan I N, Starink M J, Yan J L. A model for precipitation kinetics and strengthening in Al-Cu-Mg alloys[J]. Materials Science and Engineering: A, 2008, 472(1/2): 66-74. [17]付俊伟, 崔 凯, 王江春. Al-Cu 系耐热铝合金的研究进展[J]. 中国有色金属学报, 2021, 31(7): 1827-1841. Fu Junwei, Cui Kai, Wang Jiangchun. Recent development in Al-Cu series heat-resistant aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(7): 1827-1841. [18]Hansen N. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004, 51(8): 801-806. [19]钟培道. 断裂失效分析[J]. 理化检验: 物理分册, 2005, 41(7): 375-378. [20]Kumar S, O'Reilly K A Q. Influence of Al grain structure on Fe bearing intermetallics during DC casting of an Al-Mg-Si alloy[J]. Materials Characterization, 2016, 120: 311-322. [21]Belmares-Perales S, Zaldívar-Cadena A A. Addition of iron for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase in an Al-7.5Si-3.6Cu alloy[J]. Materials Science and Engineering B, 2010, 174(1-3): 191-195. |