[1]张丁非, 张红菊, 兰 伟, 等. 高强镁合金的研究进展[J]. 材料热处理学报, 2012, 33(6): 1-8. Zhang Dingfei, Zhang Hongju, Lan Wei, et al. Research progress of high-strength magnesium alloys[J]. Transactions of Materials and Heat Treatment, 2012, 33(6): 1-8. [2]Wang C Y, Cepeda-Jiménez C M, Pérez-Prado M T. Dislocation-particle interactions in magnesium alloys[J]. Acta Materialia, 2020, 194: 190-206. [3]Alberto O C, David L, Joseph D, et al. How magnesium accommodates local deformation incompatibility: A high-resolution digital image correlation study[J]. Acta Materialia, 2017, 133: 367-379. [4]Kim Y J, Lee J U, Kim S H, et al. Grain size effect on twinning and annealing behaviors of rolled magnesium alloy with bimodal structure[J]. Materials Science and Engineering A, 2019, 754: 38-45. [5]Liu B S, Dong G H, Ren X X, et al. Accelerated degradation rate of high-strength Mg-4Y-1Zn alloy by Cu addition for degradable bridge-plug applications[J]. International Journal of Materials Research, 2020, 111(10): 872-875. [6]Sandlöbes S, Zaefferer S, Schestakow I, et al. On the role of non-basal deformation mechanisms for the ductility of Mg and Mg-Y alloys[J]. Acta Materialia, 2011, 59(2): 429-439. [7]He Jiejun, Liu Tianmo, Xu Shun, et al. The effects of compressive pre-deformation on yield asymmetry in hot-extruded Mg-3Al-1Zn alloy[J]. Materials Science and Engineering A, 2013, 579: 1-8. [8]Park S H, Lee J H, Moon B G, et al. Tension-compression yield asymmetry in as-cast magnesium alloy[J]. Journal of Alloys and Compounds, 2014, 617: 277-280. [9]Chen Hongbing, Liu Tianmo, Zhang Yin, et al. The yield asymmetry and precipitation behavior of pre-twinned ZK60 alloy[J]. Materials Science and Engineering A, 2016, 652: 167-174. [10]He Jiejun, Wu Lushu, Sun Qihui, et al. Precipitation behavior and its effects on mechanical properties in a pre-twinned Mg-6Al-1Zn alloy[J]. Materials Transactions, 2018, 59: 1389-1395. [11]Chen Hongbing, Song Bo, Guo Ning, et al. Dynamic recrystallization and grain refinement in extruded AZ31 rod during hot torsion deformation at 150 ℃[J]. Metals and Materials International, 2019, 25: 147-158. [12]Wei Xiaoxiao, Li Jin, Wang Fenghua, et al. High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates[J]. Journal of Materials Science & Technology, 2020, 44: 19-23. [13]Li R G, Li H R, Pan H C, et al. Achieving exceptionally high strength in binary Mg-13Gd alloy by strong texture and substantial precipitates[J]. Scripta Materialia, 2021, 193: 142-146. [14]Liu Baosheng, Dong Gehang, Ren Xiaoxia, et al. Accelerated degradation rate of high-strength Mg-4Y-1Zn by Cu addition for degradable bridge-plug applications[J]. International Journal of Materials Research, 2020, 111: 872-875. [15]Feng J, Li X W, Sun H F, et al. An ultra-high strength Mg-3Al-Zn alloy with low tension-compression yield asymmetry[J]. Materials Letters, 2020, 269: 127489. [16]Suikowski B, Janoska M, Boczkal G, et al. The effect of severe plastic deformation on the Mg properties after CEC deformation[J]. Journal of Magnesium and Alloys, 2020, 8(3): 761-768. [17]Yan Zhaoming, Zhang Zhiming, Li Xubin, et al. A novel severe plastic deformation method and its effect on microstructure, texture and mechanical properties of Mg-Gd-Y-Zn-Zr alloy[J]. Journal of Alloys and Compounds, 2020, 822: 153698. [18]Zhong Liping, Wang Yongjiang, Luo Hong, et al. Evolution of the microstructure, texture and thermal conductivity of as-extruded ZM60 magnesium alloy in pre-compression[J]. Journal of Alloys and Compounds, 2019, 775: 707-713. [19]Song Bo, Guo Ning, Xin Renlong, et al. Strengthening and toughening of extruded magnesium alloy rods by combining pre-torsion deformation with subsequent annealing[J]. Materials Science and Engineering A, 2016, 650: 300-304. [20]Xin Yunchang, Wang Maoyin, Zeng Zhen, et al. Strengthening and toughening of magnesium alloy by {1012} extension twins[J]. Scripta Materialia, 2012, 66: 25-28. [21]Nie J F, Zhu Y M, Liu J Z, et al. Periodic segregation of solute atoms in fully coherent twin boundaries[J]. Science, 2013, 340: 957-960. [22]Zeng Z R, Zhu Y M, Bian M Z, et al. Annealing strengthening in a dilute Mg-Zn-Ca sheet alloy[J]. Scripta Materialia, 2015, 107: 127-130. [23]Volkov A Y, Kliukin I V. Improving the mechanical properties of pure magnesium through cold hydrostatic extrusion and low-temperature annealing[J]. Materials Science and Engineering A, 2015, 627: 56-60. [24]Zhao Linyu, Xin Yunchang, Guo Feilong, et al. A new annealing hardening mechanism in pre-twinned Mg-3Al-1Zn alloy[J]. Materials Science and Engineering A, 2016, 654: 344-351. [25]He J J, Liu T M, Zhang Y, et al. Deformation behaviour of hot extruded Mg alloy AZ31 during compressive deformation[J]. Materials Science and Technology, 2013, 29: 177-183. [26]Huang X X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals[J]. Science, 2006, 312: 249-251. |