[1]楚觉非, 方 松, 邓想涛, 等. 工程机械用高强度结构用钢研究进展[J]. 江西冶金, 2013, 33(3): 4-7. Chu Juefei, Fang Song, Deng Xiangtao, et al. Recent research advances of high strength structures steels for construction machine[J]. Jiangxi Metallurgy, 2013, 33(3): 4-7. [2]王 幸, 李红英, 汤 伟, 等. 一种高强度钢的CCT曲线的测定与分析[J]. 中南大学学报(自然科学版), 2021, 52(4): 1090-1098. Wang Xing, Li Hongying, Tang Wei, et al. Determination and analysis of CCT curve of a high strength steel[J]. Journal of Central South University(Science and Technology), 2021, 52(4): 1090-1098. [3]钱亚军, 余 伟, 武会宾, 等. 热处理对1000 MPa级工程机械结构用钢组织和性能的影响[J]. 北京科技大学学报, 2010, 32(5): 599-604. Qian Yajun, Yu Wei, Wu Huibin, et al. Effect of heat treatment on the microstructure and mechanical properties of 1000 MPa grade structural steel for construction machinery[J]. Journal of University of Science and Technology Beijing, 2010, 32(5): 599-604. [4]陈付红, 丁 伟, 黄 维, 等. 国外先进公司工程机械用高强钢发展现状[J]. 上海金属, 2015, 37(1): 47-51. Chen Fuhong, Ding Wei, Huang Wei, et al. Development status of foreign high strength steel for engineering machinery[J]. Shanghai Metals, 2015, 37(1): 47-51. [5]郑 瑞, 李 飞. 高强度工程机械用钢板应用现状和发展前景[J]. 冶金信息导刊, 2010, 47(2): 34-38. Zheng Rui, Li Fei. Application status and prospect of high strength steel plates for construction machine[J]. Metallurgical Information Review, 2010, 47(2): 34-38. [6]李红英, 赵 菲, 刘 丹, 等. 工程机械用Q1100钢的热变形应变补偿本构方程[J]. 中南大学学报(自然科学版), 2020, 51(3): 608-618. Li Hongying, Zhao Fei, Liu Dan, et al. Thermal deformation strain compensation constitutive equation for Q1100 steel for construction machinery[J]. Journal of Central South University(Science and Technology), 2020, 51(3): 608-618. [7]Afkhami S, Björk T, Larkiola J. Weldability of cold-formed high strength and ultra-high strength steels[J]. Journal of Constructional Steel Research, 2019, 158: 86-98. [8]宋 欣, 杨海峰, 王 川, 等. 屈服强度1100 MPa级超高强钢热处理组织及性能[J]. 钢铁研究学报, 2019, 31(6): 592-600. Song Xin, Yang Haifeng, Wang Chuan, et al. Microstructures and properties of 1100 MPa grade ultra high strength steel after heat treatments[J]. Journal of Iron and Steel Research, 2019, 31(6): 592-600. [9]Yun Y, Cai Q W, Xie B S, et al. Effect of tempering temperature on strain hardening exponent and flow stress curve of 1000 MPa grade steel for construction machinery[J]. Journal of Iron and Steel Research, International, 2017, 24(9): 950-956. [10]温长飞, 邓想涛, 王昭东, 等. 轧制工艺对1300 MPa级低合金超高强钢组织性能的影响[C]//第十一届中国钢铁年会论文集——S03. 轧制与热处理. 北京: 中国金属学会, 2017: 1-6. [11]闫强军, 温长飞, 姜在伟, 等. 淬火工艺对Q1100超高强度工程机械用钢组织与性能的影响[J]. 上海金属, 2018, 40(6): 39-44. Yan Qiangjun, Wen Changfei, Jiang Zaiwei, et al. Effect of quenching process on microstructure and properties of Q1100 ultra-high strength engineering machinery steel[J]. Shanghai Metals, 2018, 40(6): 39-44. [12]Martin K, Rudolf R, Helmut S, et al. Ultra high strength steels produced by thermomechanical hot rolling-advanced properties and applications[J]. BHM Berg-und Hüttenmännische Monatshefte, 2012, 157(3): 108-112. [13]Tsuyama S. Thick plate technology for the last 100 years: A world leader in thermo mechanical control process[J]. ISIJ International, 2015, 55(1): 67-78. [14]郑东升, 刘 丹, 罗 登, 等. 回火温度对工程机械用超高强钢组织及回火脆性的影响[J]. 金属热处理, 2020, 45(12): 82-86. Zheng Dongsheng, Liu Dan, Luo Deng, et al. Effect of tempering temperature on microstructure and tempering embrittlement of ultra-high strength steel for construction machinery[J]. Heat Treatment of Metals, 2020, 45(12): 82-86. [15]李灿明. 回火温度对1100 MPa钢组织和性能的影响[J]. 金属热处理, 2021, 46(4): 143-147. Li Canming. Effect of tempering temperature on microstructure and properties of 1100 MPa steel[J]. Heat Treatment of Metals, 2021, 46(4): 143-147. [16]张 杰, 蔡庆伍, 樊艳秋, 等. 回火温度E690海洋用钢组织和显微硬度的影响[J]. 材料热处理学报, 2012, 33(4): 55-61. Zhang Jie, Cai Qingwu, Fan Yanqiu, et al. Effect of tempering temperature on microstructure and microhardness of an E690 off-shore steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(4): 55-61. [17]Kim M C, Yong J O, Hong J H. Characterization of boundaries and determination of effective grain size in Mn-Mo-Ni low alloy steel from the view of misorientation[J]. Scripta Materialia, 2000, 43(3): 205-211. [18]程俊业, 赵爱民, 陈银莉, 等. 不同温度回火后30MnB5热成形钢的EBSD研究[J]. 金属学报, 2013, 49(2): 137-145. Cheng Junye, Zhao Aimin, Chen Yinli, et al. EBSD studies of 30MnB5 hot stamping steel tempered at different temperature[J]. Acta Metallurgica Sinica, 2013, 49(2): 137-145. [19]王志奋, 关 云, 李平和, 等. 超细晶贝氏体钢组织的晶界特征和晶粒尺寸[J]. 中国体视学与图像分析, 2007(2): 84-87. Wang Zhifen, Guan Yun, Li Pinghe, et al. The grain size and boundary characteristics of ultra-low carbon bainitic steels[J]. Chinese Journal of Stereology and Image Analysis, 2007(2): 84-87. [20]温长飞, 肖爱达, 刘旭辉, 等. 回火温度对低合金超高强钢Q1300组织与性能的影响[J]. 金属热处理, 2019, 44(2): 172-177. Wen Changfei, Xiao Aida, Liu Xuhui, et al. Effect of tempering temperature on microstructure and mechanical properties of low alloy ultra-high strength steel Q1300[J]. Heat Treatment of Metals, 2019, 44(2): 172-177. |