[1]王晶晨, 贾国平, 白 冰, 等. 液压支架零部件防腐及再制造工艺研究进展[J]. 材料导报, 2015, 29(21): 112-117. Wang Jingchen, Jia Guoping, Bai Bing, et al. Research progress on antisepsis and remanufacturing process of hydraulic support components[J]. Materials Review, 2015, 29(21): 112-117. [2]韩文静, 张培训, 汤其建, 等. 单体液压支柱缸体激光熔覆Ni60A+20%WC性能[J]. 煤炭学报, 2012, 37(2): 340-343. Han Wenjing, Zhang Peixun, Tang Qijian, et al. Property of laser cladded Ni60A+20%WC alloy of cylinder of single hydraulic support[J]. Journal of China Coal Society, 2012, 37(2): 340-343. [3]郭永明. 表面工程应用实例[例53]电弧喷涂在煤矿液压支架立柱修复中的应用[J]. 中国表面工程, 2018, 31(2): 2. Guo Yongming. Examples of surface engineering applications[Example 53] application of arc spraying in the repair of hydraulic support columns in coal mines[J]. China Surface Engineering, 2018, 31(2): 2. [4]李 成, 王玉玲, 姜芙林, 等. 激光功率对超声辅助激光熔覆Al2O3-ZrO2陶瓷力学性能的影响[J]. 金属热处理, 2020, 45(2): 223-229. Li Cheng, Wang Yuling, Jiang Fulin, et al. Effect of laser power on mechanical properties of ultrasonic assisted laser clad Al2O3-ZrO2 ceramic[J]. Heat Treatment of Metals, 2020, 45(2): 223-229. [5]孙 帅, 李崇桂, 李 帅, 等. WC含量对激光熔覆Al2O3/TiO2涂层组织与性能的影响[J]. 金属热处理, 2018, 43(12): 78-82. Sun Shuai, Li Chonggui, Li Shuai, et al. Effect of WC content on microstructure and properties of laser clad Al2O3/TiO2 coating[J]. Heat Treatment of Metals, 2018, 43(12): 78-82. [6]王贤才, 张亚普, 柴蓉霞. 27SiMn钢表面激光熔覆304不锈钢的组织和性能[J]. 金属热处理, 2020, 45(4): 188-193. Wang Xiancai, Zhang Yapu, Chai Rongxia. Microstructure and properties of 304 stainless steel laser cladding on 27SiMn steel surface[J]. Heat Treatment of Metals, 2020, 45(4): 188-193. [7]郭 卫, 李凯凯, 柴蓉霞, 等. 27SiMn钢表面激光熔覆铁基合金组织和耐磨性分析[J]. 应用激光, 2018, 38(3): 351-357. Guo Wei, Li Kaikai, Chai Rongxia, et al. Analysis of microstructure and wear resistance of Fe-based alloy on 27SiMn steel surface by laser cladding[J]. Applied Laser, 2018, 38(3): 351-357. [8]黎文强. 液压支架激光熔覆强化层的组织与性能[J]. 金属热处理, 2019, 44(5): 83-86. Li Wenqiang. Microstructure and properties of laser cladding reinforced layer of hydraulic support[J]. Heat Treatment of Metals, 2019, 44(5): 83-86. [9]Shen F M, Tao W, Li L Q, et al. Effect of microstructure on the corrosion resistance of coatings by extreme high speed laser cladding[J]. Applied Surface Science, 2020, 517: 146085. [10]Zhang L, Wang C S, Han L Y, et al. Influence of laser power on microstructure and properties of laser clad Co-based amorphous composite coatings[J]. Surfaces and Interfaces, 2017, 6: 18-23. [11]Li Y X, Su K Q, Bai P K, et al. Microstructure and property characterization of Ti/TiBCN reinforced Ti based composite coatings fabricated by laser cladding with different scanning speed[J]. Materials Characterization, 2020, 159: 110023. [12]程秀全, 晏 畅, 程思竹, 等. 工艺参数对激光冲击诱导表面残余应力洞的影响规律[J]. 机械工程材料, 2019, 43(11): 53-56, 61. Cheng Xiuquan, Yan Chang, Cheng Sizhu, et al. Influence rule of process parameters on residual stress cave induced by laser shock[J]. Materials for Mechanical Engineering, 2019, 43(11): 53-56, 61. [13]李广琪, 朱刚贤, 赵 亮, 等. 离焦量对中空环形激光熔覆层温度场及应力场的影响[J]. 中国机械工程, 2021, 32(5): 587-593, 599. Li Guangqi, Zhu Gangxian, Zhao Liang, et al. Influence of defocusing amount on temperature and stress field of hollow-ring laser cladding layer[J]. China Mechanical Engineering, 2021, 32(5): 587-593, 599. [14]邱 莹, 张凤英, 胡腾腾, 等. 激光功率对TC4表面熔覆Ti40阻燃钛合金组织及硬度的影响[J]. 中国激光, 2019, 46(11): 167-175. Qiu Ying, Zhang Fengying, Hu Tengteng, et al. Effect of laser power on microstructure and hardness of Ti40 flame-retardant titanium alloy deposited by laser cladding on TC4 surface[J]. Chinese Journal of Lasers, 2019, 46(11): 167-175. [15]Wang C L, Gao Y, Zeng Z C, et al. Effect of rare-earth on friction and wear properties of laser cladding Ni-based coatings on 6063Al[J]. Journal of Alloys and Compounds, 2017, 727: 278-285. |