[1]代发明, 蒋 欣, 王凌旭, 等. 回火温度对35CrMo钢显微组织和力学性能的影响[J]. 机械工程材料, 2018, 42(9): 73-77. Dai Faming, Jiang Xin, Wang Lingxu, et al. Effect of tempering temperature on microstructure and mechanical properties of 35CrMo steel[J]. Materials for Mechanical Engineering, 2018, 42(9): 73-77. [2]Ktena A, Hristoforou E, Gerhardt G, et al. Barkhausen noise as a microstructure characterization tool[J]. Physica B: Condensed Matter, 2014, 435: 109-112. [3]沈正祥, 牛亚平, 陈 虎, 等. 矫顽力在碳钢热处理质量预评定中的应用[J]. 理化检测: 物理分册, 2020, 56(2): 1-5. Shen Zhengxiang, Niu Yaping, Chen Hu, et al. Application of coercivity force in pre-evaluation of heat treatment quality[J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2020, 56(2): 1-5. [4]陈金忠, 马义来, 靳 阳. 基于巴克豪森效应的管道应力内检测辅助装置[J]. 油气储运, 2020, 39(10): 118-122. Chen Jinzhong, Ma Yilai, Jin Yang. An auxiliary device for internal pipeline stress detection based on Barkhausen effect[J]. Oil & Gas Storage and Transportation, 2020, 39(10): 118-122. [5]刘柄显, 丁思源, 郑海波. 基于巴克豪森效应预测烧伤齿轮显微组织的变化[J]. 无损检测, 2019, 41(5): 38-43. Liu Bingxian, Ding Siyuan, Zheng Haibo. Microstructure changes prediction of burned gear based on Barkhausen effect[J]. Nondestructive Testing, 2019, 41(5): 38-43. [6]杨理践, 吕 铮, 高松巍. 基于矫顽力特性的钢板应力检测技术[J]. 仪表技术与传感器, 2016(11): 31-34. Yang Lijian, Lü Zheng, Gao Songwei. Steel plate stress test technology base on coercivity characteristics[J]. Instrument Technique and Sensor, 2016(11): 31-34. [7]秦智军, 杨雅玲, 任尚坤, 等. 应力对35号冷轧钢磁性特征的影响研究[J]. 无损探伤, 2011, 35(5): 25-27. Qin Zhijun, Yang Yaling, Ren Shangkun, et al. Influence of stress on magnetic properties of 35 cold rolled steel[J]. Nondestructive Inspection, 2011, 35(5): 25-27. [8]Sorsa A, Leivisk K, Santa-aho S, et al. Quantitative prediction of residual stress and hardness in case-hardened steel based on the Barkhausen noise measurement[J]. NDT&E International, 2012, 46: 100-106. [9]Nezhad K K, Kahrobaee S, Akhlaghi I A. Application of magnetic hysteresis loop method to determine prior austenite grain size in plain carbon steels[J]. Journal of Magnetism and Magnetic Materials, 2019, 477: 275-282. [10]肖文凯, 彭志方, 王志武, 等. 10CrMo910钢老化过程中的巴克豪森效应[J]. 武汉大学学报(工学版), 2005, 38(4): 71-74. Xiao Wenkai, Peng Zhifang, Wang Zhiwu, et al. Barkhausen noise response on aging process of 10CrMo910 steel[J]. Engineering Journal of Wuhan University, 2005, 38(4): 71-74. [11]苏 磊, 刘海红. 热处理工艺对35CrMo钢组织及性能的影响[J]. 金属热处理, 2016, 41(6): 73-78. Su Lei, Liu Haihong. Influence of heat treatment on microstructure and mechanical properties of 35CrMo steel[J]. Heat Treatment of Metals, 2016, 41(6): 73-78. [12]Singh S S, Awale A S, Chaudhari A, et al. Monitoring the microstructural changes of heat treated medium carbon steel by Barkhausen noise and hysteresis loop techniques[J]. Materials Today: Proceedings, 2020, 26(2): 1198-1202. [13]沈功田, 郑 阳, 蒋政培, 等. 磁巴克豪森噪声技术的发展现状[J]. 无损检测, 2016, 38(7): 66-74. Shen Gongtian, Zheng Yang, Jiang Zhengpei, et al. The development status of magnetic Barkhausen noise technique[J]. Nondestructive Testing, 2016, 38(7): 66-74. [14]Bida G V, Nichipuruk A P. Coercive force measurements in nondestructive testing[J]. Russian Journal of Nondestructive Testing, 2000, 36(10): 707-727. [15]Sablik M J. Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels[J]. Journal of Applied Physics, 2001, 89(10): 5610-5613. [16]Sandomirskii S G. Estimation of the ultimate tensile strength of steel from its HB and HV hardness numbers and coercive force[J]. Russian Metallurgy (Metally), 2017(11): 989-993. [17]Sudharsanam V, Senthilkumar V, Raju N, et al. Evaluation of post weld heat treatment quality of modified 9Cr-1Mo (p91) steel weld by magnetic coercive force measurements[J]. Archives of Civil & Mechanical Engineering, 2015, 15(4): 847-853. [18]刘 辉, 祁 欣. 基于巴克豪森噪声技术的电磁应力理论分析[J]. 北京化工大学学报 (自然科学版), 2012, 39(5): 118-121. Liu Hui, Qi Xin. Magnetic field and stress theory analysis based on magnetic Barkhausen noise technology[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2012, 39(5): 118-121. [19]张 鑫, 谭继东, 朱雨虹, 等. 磁巴克豪森噪声表征铁磁性材料应力的最优特征值研究[J]. 传感技术学报, 2020, 33(9): 1240-1245. Zhang Xin, Tan Jidong, Zhu Yuhong, et al. Study on the optimal feature of magnetic Barkhausen noise to characterize stress in ferromagnetic materials[J]. Chinese Journal of Sensors and Actuators, 2020, 33(9): 1240-1245. |