[1]李红萍, 叶凌英, 邓运来, 等. 航空铝锂合金研究进展[J]. 中国材料进展, 2016, 35(11): 856-862. Li Hongping, Ye Lingying, Deng Yunlai, et al. Progress of aerocraft Al-Li alloys[J]. Materials China, 2016, 35(11): 856-862. [2]周昌荣, 潘青林, 朱朝明, 等. 新型铝锂合金的研究和发展[J]. 材料导报, 2004, 18(5): 30-32. Zhou Changrong, Pan Qinglin, Zhu Chaoming, et al. Development and study of new types aluminum-lithium alloys[J]. Materials Reports, 2004, 18(5): 30-32. [3]杨守杰, 陆 政, 苏 斌, 等. 铝锂合金研究进展[J]. 材料工程, 2001(5): 44-47. Yang Shoujie, Lu Zheng, Su Bin, et al. Development of aluminum-lithium alloys[J]. Journal of Materials Engineering, 2001(5): 44-47. [4]冯朝辉, 于 娟, 郝 敏, 等. 铝锂合金研究进展及发展趋势[J]. 航空材料学报, 2020, 40(1): 1-11. Feng Zhaohui, Yu Juan, Hao Min, et al. Research progress and development trend of aluminum-lithium alloys[J]. Journal of Aeronautical Materials, 2020, 40(1): 1-11. [5]Ahmed B, Wu S J. Aluminum lithium alloys (Al-Li-Cu-X) new generation material for aerospace application[J]. Applied Mechanics & Materials, 2013, 440: 104-111. [6]Lequeu P, Smith K P, Danielou A. Aluminum-copper-lithium alloy 2050 developed for medium to thick plate[J]. Journal of Materials Engineering and Performance, 2010, 19(6): 841-847. [7]Fridlyander I N. Structural aluminum-lithium alloys[J]. Metal Science and Heat Treatment, 1990, 32(3/4): 235-245. [8]Zhu Ruihua, Liu Qing, Li Jingfeng, et al. Dynamic restoration mechanism and physically based constitutive model of 2050 Al-Li alloy during hot compression[J]. Journal of Alloy and Compounds, 2015, 650: 75-85. [9]吴秀亮, 刘 铭, 李国爱, 等. 铝锂合金热机械处理研究进展[J]. 航空材料学报, 2016, 36(5): 82-89. Wu Xiuliang, Liu Ming, Li Guoai, et al. Research and progress of thermomechanical treatment of Al-Li alloys[J]. Journal of Aeronautical Materials, 2016, 36 (5): 82-89. [10]张显峰, 李国爱, 陆 政, 等. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响[J]. 金属学报, 2016, 52(12): 1497-1502. Zhang Xianfeng, Li Guoai, Lu Zheng, et al. Effect of preaged stretch after quenched on the properties and microstructure of a naturally aged Al-Li alloy[J]. Acta Metallurgica Sinica, 2016, 52(12): 1497-1502. [11]Vincent P, Joel A, Eric A, et al. The influence of artificial ageing on the corrosion behavior of a 2050 luminium-copper-lithium alloy[J]. Corrosion Science, 2014, 80: 494-502. [12]王东林. 新型铝锂合金析出相析出规律及相关机理研究[D]. 长沙: 中南大学, 2009. Wang Donglin. Study on precipitation rule and related mechanism of new Al-Li alloy[D]. Changsha: Central South University, 2009. [13]Tack W T, Heubaum F H, Pickness J R, Mechanical properties evaluations of a new, ultra-high strength Al-Cu-Li-Ag-Mg alloy[J]. Scripta Metall Mater, 1990, 24(9): 1685-1690. [14]Russo E DI, Conserva M, Gatto F. A new thermo-mechanical procedure for improving the ductility and toughness of Al-Zn-Mg-Cu alloys in the transverse direction[J]. Materials Science and Engineering, 1974, 14: 23-36. [15]Kelly D J, Robinson M J. Influence of heat treatment and grain size on exfoliation corrosion of Al-Li alloy 8090[J]. Corrosion, 1993, 49: 787-795. [16]王祝堂, 戴圣龙. 铝合金厚板生产技术与应用手册[M]. 长沙: 中南大学出版社, 2015, 213. Wang Zhutang, Dai Shenglong. Handbook of Aluminum Plate Production and Application[M]. Changsha: Central South University Press, 2015, 213. [17]李劲风, 郑子樵, 任文达. 第二相在铝合金局部腐蚀中的作用机制[J]. 材料导报, 2005, 19(2): 81-83. Li Jinfeng, Zheng Ziqiao, Ren Wenda. Function mechanism of secondary phase on localized corrosion of Al alloy[J]. Materials Reports, 2005, 19(2): 81-83. [18]Kumai C, Kusinski J, Thomas G, et al. Influence of aging at 200 ℃ on the corrosion resistance of Al-Li and Al-Cu-Li alloys[J]. Corrosion, 1989, 45(4): 294 -302. |