[1]Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scripta Materialia, 2017, 126: 63-67. [2]刘永刚, 潘红波, 詹 华, 等. 几种典型第三代汽车用先进高强度钢技术浅析[J]. 金属热处理, 2015, 40(8): 13-19. Liu Yonggang, Pan Hongbo, Zhan Hua, et al. Introduction of several typical 3rd generation AHSS for automotive industry[J]. Heat Treatment of Metals, 2015, 40(8): 13-19. [3]Huseyin A, Elhachmi E, In-Ho J, et al. Development of 3rd generation AHSS with medium Mn content alloying compositions[J]. Materials Science and Engineering A, 2013, 564: 501-508. [4]Han H N, Oh C S, Kim G, et al. Design method for TRIP-aided multiphase steel based on a microstructure-based modelling for transformation-induced plasticity and mechanically induced martensitic transformation[J]. Materials Science and Engineering A, 2009, 499(1/2): 462-468. [5]陈 斌. 1000 MPa级超高强冷轧相变诱导塑性钢组织性能调控研究[D]. 北京: 北京科技大学, 2019. Chen Bin. Research on microstructure and property control technology of 1000 MPa super high strength cold rolled TRIP steel[D]. Beijing: University of Science and Technology Beijing, 2019. [6]吕弘毅. 汽车用高锰TWIP钢的研究现状[J]. 热加工工艺, 2017, 46(6): 16-19. Lü Hongyi. Research status of high manganese TWIP steel for automotive industry[J]. Hot Working Technology, 2017, 46(6): 16-19. [7]赵 棪. 逆相变退火工艺对5%Mn中锰钢组织性能的影响[D]. 呼和浩特: 内蒙古工业大学, 2019. Zhao Yan. Effect of ART on microstructure and properties of 5%Mn medium manganese steel[D]. Hohhot: Inner Mongolia University of Technology, 2019. [8]Codrick J M, Susil K P, Jamed B, et al. Processing of a new high strength high toughness steel with duplex microstructure (ferrite+austenite)[J]. Materials and Design, 2013, 46: 168-174. [9]魏元生. 第三代高强度汽车钢的性能与应用[J]. 金属热处理, 2015, 40(12): 34-39. Wei Yuansheng. Performance and application of the 3rd generation high strength automobile steel[J]. Heat Treatment of Metals, 2015, 40(12): 34-39. [10]王存宇, 曹文全, 董 瀚. 中锰第三代汽车钢及其先进性[C]//第十一届中国钢铁年会论文集. 2017: 6-12. Wang Cunyu, Cao Wenquan, Dong Han. The third generation automobile steel of medium manganese and its advantages[C]//Proceedings of the 11th CSM Steel Congress. 2017: 6-12. [11]卜子华, 徐淑琼. 高强度汽车钢[J]. 科技世界, 2019(16): 114-115. Bu Zihua, Xu Shuqiong. High strength automobile steel[J]. Science and Technology Vision, 2019(16): 114-115. [12]罗振轩, 荣 建, 杨 可, 等. 高强度汽车用钢发展与第3代汽车高强度钢的研究[J]. 汽车工艺与材料, 2015(4): 1-5. Long Zhenxuan, Rong Jian, Yang Ke, et al. Development of high-strength automobile steel and research on the third generation of high-strength automobile steel[J]. Automobile Technology and Material, 2015(4): 1-5. [13]董 瀚, 曹文全, 时 捷, 等. 第3代汽车钢的组织与性能调控技术[J]. 钢铁, 2011, 46(6): 1-11. Dong Han, Cao Wenquan, Shi Jie, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels[J]. Iron and Steel, 2011, 46(6): 1-11. [14]董 瀚, 王毛球, 翁宇庆. 高性能钢的M3组织调控理论与技术[J]. 钢铁, 2010, 45(7): 1-7. Dong Han, Wang Maoqiu, Weng Yuqing. Performance improvement of steels through M3 structure control[J]. Iron and Steel, 2010, 45(7): 1-7. [15]Fan L F, Sai L, Yan Z, et al. Effect of a two-phase region annealing process on microstructure and mechanical properties of medium manganese steel[J]. Ironmaking and Steelmaking, 2020, 47(8): 865-872. [16]李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响[J]. 金属学报, 2015, 51(5): 537-544. Li Xiaolin, Wang Zhaodong. Effect of one step Q&P proess on micro-sturcture and mechanical properties of a dual martensite steel[J]. Acta Metallurgica Sinica, 2015, 51(5): 537-544. [17]崔文芳, 刘春明. 低碳钢超细晶铁素体的形成[J]. 材料研究学报, 2006, 20(3): 240-244. Cui Wenfang, Liu Chunming. Formation of ultrafine ferrite in low-carbon steels[J]. Chinese Journal of Materials Research, 2006, 20(3): 240-244. [18]Priestner R, Ali L. Strain induced transformation in C-Mn steel during single pass rolling[J]. Materials Science and Technology, 1993, 9(2): 135-141. [19]Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate[J]. Materials Science and Engineering A, 2016, 675: 153-163. [20]Jang J M, Kim S J, Kang N H, et al. Effects of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel[J]. Metals and Materials International, 2009, 15(6): 909-916. [21]杨跃辉, 蔡庆伍, 武会宾, 等. 两相区热处理过程中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响[J]. 金属学报, 2009, 45(3): 270-274. Yang Yuehui, Cai Qingwu, Wu Huibin, et al. Formation of reversed austenite and its effect on cryogenic toughness of 9Ni steel during two-phase region heat treatment[J]. Acta Metallurgica Sinica, 2009, 45(3): 270-274. [22]尹鸿翔, 赵爱民, 赵征志, 等. Mn含量对低碳中锰TRIP钢组织性能的影响[J]. 材料科学与工艺, 2014, 22(3): 11-15. Yin Hongxiang, Zhao Aimin, Zhao Zhengzhi, et al. Effect of Mn content on microstructure and mechanical properties of a low carbon medium-manganese TRIP steel[J]. Materials Science and Technology, 2014, 22(3): 11-15. [23]Arlazarov A, Gouné M, Bouaziz O. Evolution of microstructure and mechanical properties of medium Mn steels during double annealing[J]. Materials Science and Engineering A, 2012, 542(5): 31-39. [24]Zhao Z Z, Liang J H, Zhao A M, et al. Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system[J]. Journal of Alloys and Compounds, 2017, 691: 51-59. |